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Last time 

•  Data modeling 

•  Motivation of least-squares error 

•  Formulation of linear least-squares model:  

•  Solving using ormal equations (bad), pseudoinverse 

•  Illustrating least-squares with special cases: constant, 
line 

•  Weighted least squares 

•  Evaluating model quality 

  

€ 

yi = a f (  x i) + bg( x i) + c h(  x i) +
Given ( x i,yi), solve for a,b,c,…



Today 

•  Solving non-linear least squares 
– Newton, Gauss-Newton methods 
–  Logistic regression and Levenberg-Marquardt 

method 

•  Dealing with outliers and bad data:  
 Robust regression with M-Estimators 

•  Practical considerations 
–  Is least squares an appropriate method for my 

data? 

•  Solving with Excel and Matlab 



Example: Logistic Regression 

•  Model probability of an event based on 
values of explanatory variables, using 
generalized linear model, logistic function g(z) 



Logistic Regression 

•  Assumes positive and negative examples are 
normally distributed, with different means but 
same variance 

•  Applications: predict odds of election victories, 
sports events, medical outcomes, etc. 



Nonlinear Least Squares 

•  Some problems can be rewritten to linear 

•  Fit data points (xi, log yi) to a*+bx, a = ea* 

•  Big problem: this no longer minimizes 
squared error! 



Nonlinear Least Squares 

•  Can write error function, minimize directly 

•  For the exponential, no analytic solution for a, b: 
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Newton’s Method 

•  Apply Newton’s method for minimization: 
–  1-dimensional:  

–  n-dimensional: 

where H is Hessian (matrix of all 2nd derivatives) 
and G is gradient (vector of all 1st derivatives) 
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Newton’s Method 

•  Apply Newton’s method for minimization: 
–  1-dimensional:  

–  n-dimensional: 

•   

where H is Hessian (matrix of all 2nd derivatives) 
and G is gradient (vector of all 1st derivatives) 



Newton’s Method for Least Squares 

•  Gradient has 1st derivatives of  f, Hessian 2nd 
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Gauss-Newton Iteration 

•  Consider 1 term of Hessian: 

•  Equivalently, the book version: 

•  If close to answer, residual is close to 0 
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Gauss-Newton Iteration 
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gradient of residual estimate of Hessian 



Last week: Linear Least Squares Solution 

•  Interpretation: find x that comes “closest” to 
satisfying Ax=b 
–  i.e., minimize b–Ax 

–  i.e., minimize || b–Ax || 

– Equivalently, find x such that r is orthogonal to 
span(A) 
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0 =  A Tr =A T (b −Ax)
A TAx =A Tb



Gauss-Newton Iteration 
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Example: Logistic Regression 

•  Model probability of an event based on 
values of explanatory variables, using 
generalized linear model, logistic function g(z) 



Logistic Regression 

•  Assumes positive and negative examples are 
normally distributed, with different means but 
same variance 

•  Applications: predict odds of election victories, 
sports events, medical outcomes, etc. 

•  Estimate parameters a, b, … using Gauss-
Newton on individual positive, negative 
examples 

•  Handy hint: g’(z) = g(z) (1-g(z)) 



Gauss-Newton++:  
The Levenberg-Marquardt Algorithm 



Levenberg-Marquardt 

•  Newton (and Gauss-Newton) work well when 
close to answer, terribly when far away 

•  Steepest descent safe when far away 

•  Levenberg-Marquardt idea: let’s do both 

Steepest 
descent 

Gauss- 
Newton 



Levenberg-Marquardt 

•  Trade off between constants depending on how far 
away you are… 

•  Clever way of doing this: 

•  If λ is small, mostly like Gauss-Newton 

•  If λ is big, matrix becomes mostly diagonal, 
behaves like steepest descent 



Levenberg-Marquardt 

•  Final bit of cleverness: adjust λ depending on 
how well we’re doing 
– Start with some λ, e.g. 0.001 
–  If last iteration decreased error, accept the step 

and decrease λ to λ/10 
–  If last iteration increased error, reject the step and 

increase λ to 10λ 

•  Result: fairly stable algorithm, not too painful 
(no 2nd derivatives), used a lot 



Dealing with Outliers 



Outliers 

•  A lot of derivations assume Gaussian 
distribution for errors 

•  Unfortunately, nature (and experimenters) 
sometimes don’t cooperate 

•  Outliers: points with extremely low probability 
of occurrence (according to Gaussian 
statistics) 

•  Can have strong influence on least squares 

Gaussian 
Non-Gaussian 



Example: without outlier 
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Example: with outlier 
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Robust Estimation 

•  Goal: develop parameter estimation methods 
insensitive to small numbers of large errors 

•  General approach: try to give large deviations 
less weight 

•  e.g., Median is a robust measure, mean is 
not 

•  M-estimators: minimize some function 
other than square of y – f(x,a,b,…) 



Least Absolute Value Fitting 

•  Minimize 
instead of 

•  Points far away from trend get comparatively 
less influence 



Example: Constant 

•  For constant function  y = a, 
minimizing  Σ(y–a)2  gave  a = mean 

•  Minimizing  Σ|y–a|  gives  a = median 



Least Squares vs. Least Absolute Deviations 

•  LS: 
– Not robust 
– Stable, unique solution 
– Solve with normal equations, Gauss-Newton, etc. 

•  LAD 
– Robust 
– Unstable, not necessarily unique 
– Requires iterative solution method (e.g. simplex) 

•  Interactive applet: http://www.math.wpi.edu/Course_Materials/
SAS/lablets/7.3/7.3c/lab73c.html 



Doing Robust Fitting 

•  In general case, nasty function: 
discontinuous derivative 

•  Simplex method often a good choice 



Iteratively Reweighted Least Squares 

•  Sometimes-used approximation: 
convert to iteratively weighted least squares 

with wi based on previous iteration 



Review: Weighted Least Squares 

•  Define weight matrix W as 

•  Then solve weighted least squares via 



M-Estimators 

Different options for weights 
– Give even less weight to outliers 

L1 

“Fair” 

Cauchy / Lorentzian 

Welsch 



Iteratively Reweighted Least Squares 

•  Danger!  This is not guaranteed to converge 
to the right answer! 
– Needs good starting point, which is available if 

initial least squares estimator is reasonable 
–  In general, works OK if few outliers, not too far off 



Outlier Detection and Rejection 

•  Special case of IRWLS: set weight = 0 if 
outlier, 1 otherwise 

•  Detecting outliers: (yi–f(xi))2 > threshold 
– One choice: multiple of mean squared difference 
– Better choice: multiple of median squared 

difference 
– Can iterate… 
– As before, not guaranteed to do anything 

reasonable, tends to work OK if only a few outliers 



RANSAC 

•  RANdom SAmple Consensus: desgined for 
bad data (in best case, up to 50% outliers) 

•  Take many random subsets of data 
– Compute least squares fit for each sample 

– See how many points agree: (yi–f(xi))2 < threshold 

– Threshold user-specified or estimated from more 
trials 

•  At end, use fit that agreed with most points 
– Can do one final least squares with all inliers 



RANSAC 



Least Squares in Practice 



Least Squares in Practice 

•  More data is better 
–  uncertainty in estimated parameters goes down 

slowly: like 1/sqrt(# samples) 

•  Good correlation doesn’t mean a model is 
good 
–  use visualizations and reasoning, too.  



Anscombe’s Quartet 

y = 3.0 + 0.5x 
r = 0.82 



Anscombe’s Quartet 



Least Squares in Practice 

•  More data is better 

•  Good correlation doesn’t mean a model is 
good 

•  Many circumstances call for (slightly) more 
sophisticated models than least squares 
– Generalized linear models, regularized models 

(e.g., LASSO), PCA, … 



Residuals depend on x (heteroscedastic): 
Assumptions of linear least squares not met 



Least Squares in Practice 

•  More data is better 

•  Good correlation doesn’t mean a model is 
good 

•  Many circumstances call for (slightly) more 
sophisticated models than linear LS 

•  Sometimes a model’s fit can be too good 
(“overfitting”)  
– more parameters may make it easier to overfit 



Overfitting 



Least Squares in Practice 

•  More data is better 

•  Good correlation doesn’t mean a model is 
good 

•  Many circumstances call for (slightly) more 
sophisticated models than linear LS 

•  Sometimes a model’s fit can be too good 

•  All of these minimize “vertical” squared 
distance 
– Square, vertical distance not always appropriate 



Least Squares in Matlab, Excel 

•  Matlab 
–  Linear L.S.: polyfit 

•  For polynomial of arbitrary degree 
•  Plot/use with polyval 

– Non-linear:  
•  lsqnonlin, lsqcurvefit 
•  fminsearch (generic optimization, uses simplex) 

– Curve fitting toolbox, Optimization toolbox 

•  Excel: Chart trendlines use least squares 


