Data Modeling and
Least Squares Fitting 2

COS 323



Last time

Data modeling
Motivation of least-squares error

Formulation of linear least-squares model: /‘Sr— b Az
y.=af(X)+bg(X,)+ch(X,)+:

Given (x,,y,), solve for a,b,c,...

span(A)
Solving using ormal equations (bad), pseudoinverse

lllustrating least-squares with special cases: constant,
line
Weighted least squares

Evaluating model quality



Today

Solving non-linear least squares
— Newton, Gauss-Newton methods

— Logistic regression and Levenberg-Marquardt
method

Dealing with outliers and bad data:
Robust regression with M-Estimators

Practical considerations

— |s least squares an appropriate method for my
data?

Solving with Excel and Matlab



Example: Logistic Regression

* Model probability of an event based on
values of explanatory variables, using
generalized linear model, logistic function g(z)

]

p(X) = g(ax, +bx, +--)

1

g(z)=——
l+e




Logistic Regression

* Assumes positive and negative examples are

normally distributed, with different means but
same variance

* Applications: predict odds of election victories,
sports events, medical outcomes, etc.



Nonlinear Least Squares

« Some problems can be rewritten to linear
y _ aebx
= (logy)=(loga)+ bx
» Fit data points (x, log y,) to a’+bx, a = ¥

* Big problem: this no longer minimizes
squared error!



Nonlinear Least Squares

» Can write error function, minimize directly
Xz . E(yl _f(xi9a9b9°°'))2

Set L) =0, L) = (), etc.
da 0b

* For the exponential, no analytic solution for a, b:

7 =3 -ae")

L = E—Zebx" (yl. — aebx") =0



Newton’s Method

* Apply Newton’s method for minimization:

f(x,)

— 1-dimensional:

xk+1 = xk —

— n-dimensional: {a)

b

\ ° /

i+1

(a)
b

s

f”(xk)

-H'G

where H is Hessian (matrix of all 2"d derivatives)
and G is gradient (vector of all 15t derivatives)
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Newton’s Method

* Apply Newton’s method for minimization:

f(x,)

— 1-dimensional:

xk+1 = 'xk —

— n-dimensional: {a)

y b

\ ° /

i+1

(a)
b

s

f”(xk)

-H'G

where H is Hessian (matrix of all 2"d derivatives)
and G is gradient (vector of all 15t derivatives)



Newton’s Method for Least Squares

Xz(aabv") . E(y’ — ][('X’-i’a’b""))Z

[ 0| E ‘2%(%— - f(x,,a,b.,.. .))

G =% = i-zg—f;(yi- f(x,ab....))

2(x*) 0 (xD)
0a’ dadb

H (x> ()
daob ob?

. Gradient has 1t derivatives of f, Hessian 2nd



(Gauss-Newton Iteration

 Consider 1 term of Hessian:

0’ (x*) (E 2%, - f(x,a.b,.. >))

da’
=23 L0 Yt )+ 23 4

» Equivalently, the book version:

Sk =(JT(X1<)J(XI<)M) (_JT(Xk)r(Xk))

i=1

* |f close to answer, residual is close to 0



(Gauss-Newton Iteration

(al  (a)
b
\5)i+1 K/z

s, = ~H'G (Newton) becomes

estimate of Hessian ,- =}gradient of residual
\
|

solve this for s,

/%('xl) %(Xl) /yl _f(xl’a’b’“')\
J = g_];(xz) %(xz) , T=| Y, = f(xab,)
| : .'-/ \ E )

bl +s




Last week: Linear Least Squares Solution

- Interpretation: find x that comes “closest” to
satisfying Ax=Db //rbAm

— I.e., minimize b—AXx
y=Ax

— i.e., minimize || b-Ax || Cpan(4)

— Equivalently, find x such that r is orthogonal to
span(A)

0 = A'r =A"(b - Ax)
A"Ax =A"b



(Gauss-Newton Iteration

(al  (a)
b
\5)i+1 K/z

s, = ~H'G (Newton) becomes

estimate of Hessian ,- =}gradient of residual
\
|

solve this for s,

/%('xl) %(Xl) /yl _f(xl’a’b’“')\
J = g_];(xz) %(xz) , T=| Y, = f(xab,)
| : .'-/ \ E )

bl +s




Example: Logistic Regression

* Model probability of an event based on
values of explanatory variables, using
generalized linear model, logistic function g(z)

]

p(X) = g(ax, +bx, +--)

1

g(z)=——
l+e




Logistic Regression

Assumes positive and negative examples are
normally distributed, with different means but
same variance

Applications: predict odds of election victories,
sports events, medical outcomes, etc.

Estimate parameters a, b, ... using Gauss-
Newton on individual positive, negative
examples

Handy hint: g'(z) = g(z) (1-9(z))



(Gauss-Newton+-+:
The Levenberg-Marquardt Algorithm




Levenberg-Marquardt

* Newton (and Gauss-Newton) work well when
close to answer, terribly when far away

- Steepest descent safe when far away

» Levenberg-Marquardt idea: let's do both

-1

(a@\ (a (22 Zzw
of of of of
b =|b —OCG—/g 255 Z%E | G
\:/i+1 :/i / \ : \
Steepest Gauss-

descent Newton



Levenberg-Marquardt

Trade off between constants depending on how far
away you are...

Clever way of doing this:

o of I of
a a (1-+';L)§:?i;?;; }i?;;?ﬁ;

=|bp| -] =ZZZ 1+ A)ZLL  ...| G

da 0db db 9b

If A is small, mostly like Gauss-Newton

If A is big, matrix becomes mostly diagonal,
behaves like steepest descent



Levenberg-Marquardt

 Final bit of cleverness: adjust A depending on
how well we're doing
— Start with some A, e.g. 0.001

— |If last iteration decreased error, accept the step
and decrease A to A/10

— If last iteration increased error, reject the step and
increase Ato 104

« Result: fairly stable algorithm, not too painful
(no 2nd derivatives), used a lot



Dealing with Outliers




Outliers

A lot of derivations assume Gaussian
distribution for errors

Unfortunately, nature (and experimenters)

probability

sometimes don't cooperate Gaussian

Non-Gaussian
___S N

Outliers: points with extremely low probability

of occurrence (according to Gaussian

statistics)

Can have strong influence on least squares



Example: without outlier
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Robust Estimation

Goal: develop parameter estimation methods
Insensitive to small numbers of /arge errors

General approach: try to give large deviations
less weight

e.g., Median is a robust measure, mean is
not

M-estimators: minimize some function
other than square of y — f(x,a,b,...)



Least Absolute Value Fitting

» Minimize Y- /f(x.a.b...)
Instead of E(yl- - f(x,a,b,..))

« Points far away from trend get comparatively
less influence



Example: Constant

* For constant function y = a,
minimizing XZ(y—a)? gave a = mean

* Minimizing Z|y—al gives a = median



Least Squares vs. Least Absolute Deviations

« LS:
— Not robust
— Stable, unique solution

— Solve with normal equations, Gauss-Newton, etc.

« LAD
— Robust

— Unstable, not necessarily unique
— Requires iterative solution method (e.g. simplex)

 Interactive applet: http://www.math.wpi.edu/Course Materials/
SAS/lablets/7.3/7.3c/lab73c.html



Doing Robust Fitting

 In general case, nasty function:
discontinuous derivative

« Simplex method often a good choice



[teratively Reweighted Least Squares

« Sometimes-used approximation:
convert to iteratively weighted least squares

Sy - f(x.a.b,..)

with w; based on previous iteration



Review: Weighted Least Squares

« Define weight matrix W as

* Then solve weighted least squares via
A'WAx=A'"Wb



M-Estimators

Different options for weights
— Give even less weight to outliers

Wi = 1
yi_f(xiaaaba---)‘ L1
W, = 1 11 =)
i €+yi_f(xiaaaba---)‘ Falr
L : Cauchy / Lorentzian

. €+ ()/i _f(xjaaabp---))z
w. = e_k(yi_f(xi,a,b,...))z WelSCh

1



Iteratively Reweighted Least Squares

- Danger! This is not guaranteed to converge
to the right answer!

— Needs good starting point, which is available if
Initial least squares estimator is reasonable

— In general, works OK if few outliers, not too far off



Outlier Detection and Rejection

- Special case of IRWLS: set weight = 0 if
outlier, 1 otherwise

- Detecting outliers: (y—f(x,))? > threshold
— One choice: multiple of mean squared difference

— Better choice: multiple of median squared
difference

— Can iterate...

— As before, not guaranteed to do anything
reasonable, tends to work OK if only a few outliers



RANSAC

« RANdom SAmple Consensus: desgined for
bad data (in best case, up to 50% outliers)

- Take many random subsets of data
— Compute least squares fit for each sample

— See how many points agree: (y—f(x:))? < threshold

— Threshold user-specified or estimated from more
trials

* At end, use fit that agreed with most points
— Can do one final least squares with all inliers



RANSAC




Least Squares 1n Practice




Least Squares 1n Practice

2
: X
- More data is better 0 = -
— uncertainty in estimated parameters goes down

slowly: like 1/sqrt(# samples)

 Good correlation doesn’t mean a model is
good

— use visualizations and reasoning, too.



Anscombe’s Quartet

Dataset 1 || Dataset 2 Dataset 3 Dataset 4
X y X y X y X y

10| 804 || 10 | 9.14 10 | 7.46 8 | 6.58
8 | 6.95 8 | 8.14 8 | 6.77 8 | 5.76
13| 758 || 13 | 8.74 13 11274 | 8 | 7.71
0 | 881 9 | 8.77 0 | 7.11 8 | 8.84
11| 833 || 11 | 9.26 11 | 7.81 8 | 8.47
14| 996 || 14 | 8.10 14 | 8.84 8 | 7.04
6 | 7.24 6 | 6.13 6 | 6.08 8 | 5.25
4 | 4.26 4 | 3.10 4 | 539 (| 19 | 12.50
12 | 1084 || 12 | 9.13 12 | 8.15 8 | 5.56
7 | 482 7 | 7.26 7 | 6.42 8 | 7.01
5 | 5.68 5 | 474 5 | 5.73 8 | 6.89

y = 3.0 + 0.5x
r=0.82



Anscombe’s Quartet

15

10

15

10

@

(c)

15

15

10

15

10

(b)
®
T T T
10 15 20
X
(d)
T T T
10 15 20



Least Squares 1n Practice

 More data is better

 Good correlation doesn’t mean a model is
good

« Many circumstances call for (slightly) more

sophisticated models than least squares

— Generalized linear models, regularized models
(e.g., LASSO), PCA, ...



Residuals depend on x (heteroscedastic):
Assumptions of linear least squares not met



Least Squares 1n Practice

More data is better

Good correlation doesn’t mean a model is
good

Many circumstances call for (slightly) more
sophisticated models than linear LS

Sometimes a model’s fit can be too good
(“overfitting”)

— more parameters may,make it easier to overfit
4
C




Overtitting




Least Squares 1n Practice

More data is better

Good correlation doesn’t mean a model is
good

Many circumstances call for (slightly) more
sophisticated models than linear LS

Sometimes a model’s fit can be too good

All of these minimize “vertical” squared

distance
— Square, vertical distance not always appropriate



Least Squares in Matlab, Excel

- Matlab
— Linear L.S.: polyfit

» For polynomial of arbitrary degree
* Plot/use with polyval

— Non-linear:

 Isqnonlin, Isqcurvefit
» fminsearch (generic optimization, uses simplex)

— Curve fitting toolbox, Optimization toolbox

« Excel: Chart trendlines use least squares



