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Last time: Linear Systems Part 2 

•  Iterative refinement 

•  Fixed-point stationary methods 
–  Formulations for root-finding and linear systems 
–  Iterative refinement as a stationary method 
–  Iterative methods for large systems: 

•  Jacobi, Gauss-Seidel, Successive Over-Relaxation 

•  Sherman-Morrison: Rank-1 updating 

•  Conjugate gradient (formulating a linear system as an 
optimization problem) 

•  Representing sparse systems 



Outline 

•  What is data modeling and why do it? 

•  Why choose a model that minimizes sum of squared 
error? 

•  How to formulate and compute the optimal least-
squares linear model? 

•  Illustrating least-squares with special cases: constant, 
line 

•  Weighted least squares 

•  How to judge the quality of a model? 



Data Modeling 

•  Given: data points, functional form, 
find constants in function 

•  Example: given (xi, yi), find line through them; 
i.e., find a and b in y = ax+b 

y=ax+b 



Data Modeling 

•  You might do this because you actually care 
about those numbers… 
– Example: measure position of falling object, 

fit parabola 

p = –1/2 gt2 

⇒  Estimate g from fit 



Data Modeling 

•  … or because some aspect of behavior is unknown 
and you want to ignore it 







Historical context 



Which model is best? 



Best-fit lines under different metrics 



Least Squares 

•  Nearly universal formulation of fitting: 
minimize squares of differences between 
data and function 
– Example: for fitting a line, minimize 

with respect to a and b 

– Finds one unique best-fit model for a dataset 



Linear Least Squares 

•  (Also called “Ordinary least squares” 

•  General pattern: 

•  Dependence on unknowns (a, b, c…) is 
linear, but f, g, etc. might not be! 



Linear Least Squares Examples 

•  General form: 

•  Linear regression:  
yi = a * xi + b 

•  Multiple linear regression: x has many 
dimensions 
yi = a * x1i + b * x2i + c 

•  Polynomial regression: 
yi = a * xi

2 +  b * xi + c 

  

€ 

yi = a f (  x i) + bg( x i) + c h(  x i) +
Given ( x i,yi), solve for a,b,c,…



How do we compute the model 
parameters? 



Solving Linear Least Squares Problem  
(one simple approach) 

•  Take partial derivatives: 



Solving Linear Least Squares Problem 

•  For convenience, rewrite as matrix: 

•  Factor: 



Alternative perspective:  
[Approximate] linear system 

•  There’s a different derivation of this: 
overconstrained linear system 

•  A has n rows and m<n columns: 
more equations than unknowns 

Notation change: 
• A is now basis functions 
computed on 
observations  
(f(xi), g(xi), …) 
• x is now model 
parameters (a, b, c…) 
• b is now “y” 



Geometric Interpretation  
for Over-determined System 

•  Find the x that comes “closest” to satisfying 
Ax=b 
–  i.e., minimize b–Ax 



Geometric Interpretation 

•  Interpretation: find x that comes “closest” to 
satisfying Ax=b 
–  i.e., minimize b–Ax 

–  i.e., minimize || b–Ax || 

– Equivalently, find x such that r is orthogonal to 
span(A) 

€ 

0 =  A Tr =A T (b −Ax)
A TAx =A Tb



Forming the equation 

•  What are A and b? 
– Row i of A is basis functions computed on xi 
– Row i of b is yi 



Minimizing Sum of Squares  
= Finding Closest Ax in span(A)  

•  Compare two expressions we’ve derived: 
They’re equal! 

Starting from goal of minimizing sum of squares 

Starting from goal of finding 
Ax in span(A) closest to b 

outside span(A) 



Great, but how do we solve it? 



1: Normal Equations 

•  Pseudocode: 
 for each xi,yi 

  compute f(xi), g(xi), etc. 
  store in column i of A 
  store yi in b 
 compute ATA, ATb 
 solve ATAx=ATb 

•  These can be inefficient, since A typically much larger 
than ATA and ATb 



2: More efficient normal equations 

 for each xi,yi 

 compute f(xi), g(xi), etc. 
 accumulate outer product in U 
 accumulate product with yi in v 

solve Ux=v 



3: Using the pseudoinverse 

    for each xi,yi 

  compute f(xi), g(xi), etc.  
  store in row i of A 
  store yi in b 

compute x = (ATA)-1 ATb 

•  (ATA)-1 AT is known as “pseudoinverse” of A 



The Problem with Normal Equations 

•  Involves solving ATAx=ATb 

•  This can be inaccurate 
–  Independent of solution method 
– Remember: 

–  cond(ATA) = [cond(A)]2 

•  Next week: computing pseudoinverse 
– More expensive, but more accurate 
– Also allows diagnosing insufficient data 

€ 

||Δx ||
|| x ||

≤ cond(A) ||ΔA ||
|| A ||



Special Cases 



Special Case: Constant 

•  Let’s try to model a function of the form 
         y = a 



Special Case: Constant 

•  Let’s try to model a function of the form 
         y = a 

•  In this case, f(xi)=1 and we are solving 

€ 

1[ ]
i
∑ a[ ] = yi[ ]

i
∑

€ 

∴ a =
yii

∑
n

  

€ 

yi = a f (  x i) + bg( x i) + c h(  x i) +



Special Case: Line 

•  Fit to y=a+bx 

•  f(xi)=1, g(xi)=x. So, solve: 



Variant: Weighted Least Squares 



Weighted Least Squares 

•  Common case: the (xi,yi) have different 
uncertainties associated with them 

•  Want to give more weight to measurements 
of which you are more certain 

•  Weighted least squares minimization 

•  If “uncertainty” (stdev) is σ, best to take 



Weighted Least Squares 

•  Define weight matrix W as 

•  Then solve weighted least squares via 



Understanding Error and Uncertainty 



Error Estimates from Linear Least Squares 

•  For many applications, finding model is 
useless without estimate of its accuracy 

•  Residual is b – Ax 

•  Can compute χ2 = (b – Ax)⋅(b – Ax) 

•  How do we tell whether answer is good? 
–  Lots of measurements 
–  χ2

 is small 
–  χ2 increases quickly with perturbations to x ( 

standard variance of estimate is small) 
– R2 (“coefficient of determination”) is near 1 



Error Estimates from Linear Least Squares 

•  C=(ATA)–1 is called covariance of the data 
•  The “standard variance” in our estimate of x 

is 

•  This is a matrix: 
– Diagonal entries give variance of estimates of 

components of x: e.g., var(a0) 
– Off-diagonal entries explain mutual dependence: 

e.g., cov(a0, a1) 

•  n–m is (# of samples) minus (# of degrees of 
freedom in the fit): consult a statistician… 



Special Case: Error in Constant Model 

€ 

a = y 

€ 

standard deviation of data :  σ =
(yi − a)2

i
∑

n −1

standard error of a :  σa =
(yi − a)2

i
∑

n −1
n

€ 

χ2 = (yi − a)
2

i
∑

“standard deviation 
of mean” 

€ 

C =
1
n
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 



Coefficient of Determination 

R2 : Proportion of observed variability that is explained 
by the model  

 e.g., R2 = 0.7 means 70% variability explained 
For linear regression, R2 is Pearson’s correlation. 

€ 

R2 ≡1− χ2

yi − y 
i
∑



Keep in mind… 

•  In general, uncertainty in estimated parameters 
goes down slowly: like 1/sqrt(# samples) 

•  Formulas for special cases (like fitting a line) 
are messy: simpler to think of ATAx=ATb form 

•  Normal equations method often not numerically 
stable: orthogonal decomposition methods 
used instead 

•  Linear least squares is not always the most 
appropriate modeling technique… 



Next time 

•  Non-linear models 
–  Including logistic regression 

•  Dealing with outliers and bad data 

•  Practical considerations 
–  Is least squares an appropriate method for my 

data? 

•  Examples with Excel and Matlab 


