Data Modeling and
Least Squares Fitting

COS 323



Last time: Linear Systems Part 2

lterative refinement

Fixed-point stationary methods
— Formulations for root-finding and linear systems
— lterative refinement as a stationary method

— lterative methods for large systems:
« Jacobi, Gauss-Seidel, Successive Over-Relaxation

Sherman-Morrison: Rank-1 updating

Conjugate gradient (formulating a linear system as an
optimization problem)

Representing sparse systems



Outline

What is data modeling and why do it?

Why choose a model that minimizes sum of squared
error?

How to formulate and compute the optimal least-
squares linear model?

lllustrating least-squares with special cases: constant,
line

Weighted least squares

How to judge the quality of a model?



Data Modeling

Given: data points, functional form,
find constants in function

Example: given (x, y;), find line through them;
l.e., findaand b iny =ax+b

=ax+b
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Data Modeling

* You might do this because you actually care
about those numbers...
— Example: measure position of falling object,

fit parabola
_l time

——
c * = _1/2 gt2
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8 = Estimate g from fit
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Data Modeling

* ... or because some aspect of behavior is unknown
and you want to ignore it
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Average happiness

| | | |
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Family income (20069)

Note: 1972 to 2006. Sample size: 41,795. Each circle represents an income range of $2,000 (e.g.,
$10,001 to $12,000), in 2006$. Its diameter is proportional to the number of people in that range.

Source: My calculations from General Social Survey data.
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Which model 1s best?
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Best-fit lines under different metrics

O /

Sum of residuals Sum of absolute values of residuals

Maximum error of
any point




Least Squares

* Nearly universal formulation of fitting:
minimize squares of differences between
data and function
— Example: for fitting a line, minimize

Xz =2(yi _(axi +b))2

with respecttoaand b

— Finds one unique best-fit model for a dataset



Linear Least Squares

* (Also called “Ordinary least squares”

* General pattern:

y.=af(x)+bg(x)+ch(x)+---

Given (x,, y,), solve fora,b,c,...

- Dependence on unknowns (a, b, c...) is
linear, but f, g, etc. might not be!



Linear Least Squares Examples

Generalform: y, =a f(x,)+bg(x,))+ch(x,)+---

Given (x,,y;), solve for a,b,c,...
Linear regression:
yi=a“x+b

Multiple linear regression: x has many
dimensions
yi=a X ;tb xy+c

Polynomial regression:
yy=a*x?+ b*x +c



How do we compute the model

parameters?




Solving Linear LLeast Squares Problem

(one simple approach)

* Take partial derivatives:
X =>i—af)-bglx)—-)

i E_zf(xi)()}i_af(xi)_bg(xi)—”-)=0

Ga_l-

aZf(xi)f(xi)+b2f(xz')g(xi)+"' . zf(‘xi)yi

2= > =280 (v, —a f(x) b g(x) =)= 0

a Y g(x)f(x)+bYy 2(x)g(x)++ = ¥ g(x,),



Solving Linear Least Squares Problem

* For convenience, rewrite as matrix:
N SONS) D S@gt) el [ XSG
Eg(xi)f(xi) Eg(xi)g(xi) b|= zg('xi)yi

* Factor:
S)[Sf(x)] [a] S (x;)
E g('xi) g('xi) b =Eyi g(xi)




Alternative perspective:

[Approximate]| linear system

 There's a different derivation of this:

overconstrained linear system

\

Ax=5>

\

)

\

X

()

/

()

\ /

Notation change:

*A is now basis functions
computed on
observations

(f(xi), 9(x), --.)

*X 1S now model
parameters (a, b, C...)

*b is now “y”

* A has n rows and m<n columns:

more equations than unknowns



Geometric Interpretation

for Over-determined System

* Find the x that comes “closest” to satisfying
Ax=Db
I

— I.e., minimize b—Ax b r=b— Ax

A

span(A)




Geometric Interpretation

* Interpretation: find x that comes “closest” to
satisfying Ax=Db /{/rbAm

— I.e., minimize b—AXx
y=Ax

— i.e., minimize || b-Ax || Cpan(4)

— Equivalently, find x such that r is orthogonal to
span(A)

0 = A"Tr=A"(b-Ax)
ATAx =A™b



Forming the equation

« What are A and b?

— Row i of A is basis functions computed on x;

— Rowiofbisy,

f(x)  g(x)
A=1f()  gx)

E g(x,) f(x;) E g(x,)g(x;)

N S@fE) Y fg)
|, A'b=

o]

Vo

D vif ()
D yig(x)




Minimizing Sum ot Squares

= Finding Closest Ax in span(A)

« Compare two expressions we’ve derived:
They're equal!

-

Starting from goal of minimizing sum of squares

Starting from goal of finding

E J () f(x;) Ef(xi)g(x,-)
E_ g(x,) f(x;) E g(x,)g(x;)

T Gy

1

Ax in span(A) closestto b 2, |8(%)

outside span(A)

S (x,)]
g(x;)

T

E yif(xi)-
D yig(x)

S (x)]
- Eyi g(x;)




Great, but how do we solve it?




1: Normal Equations

* Pseudocode:
for each x,y;
compute f(x), g(x;), etc.
store in column i of A
storey,inb
compute ATA, ATb FACNIPACH I f(x;)]

solve ATAx=ATb E g(x,) || g(x;) b =2yz- g(x,)

!

* These can be inefficient, since A typically much larger
than ATA and Ao



2: More etficient normal equations

for each x,y.
compute f(x:), g(x), etc.
accumulate outer product in U
accumulate product with y; in v
solve Ux=v

-Ef(xi)f(xi) Ef(x,-)g(xi) g 'Zyl.f(xl.)'
Eg(xi)f(xi) Eg(xi)g(xi) b|= zyig(xi)

U % v



3: Using the pseudoinverse

min (b - Ax)' (b - Ax)
V(b Ax)" (b- Ax))= —2A7 (b - Ax) =
A'Ax=A'b

for each x,y.
compute f(x:), g(x;), etc.
store in row i of A
storey; in b
compute x = (ATA)1ATb

« (ATA)TAT is known as “pseudoinverse” of A



The Problem with Normal Equations

* Involves solving ATAx=ATb

* This can be inaccurate
— Independent of solution method

— Remember: || Ax || 1 AA I
< cond(A)——-
Il x |l 1Al

— cond(ATA) = [cond(A)]?

* Next week: computing pseudoinverse
— More expensive, but more accurate
— Also allows diagnosing insufficient data



Special Cases




Special Case: Constant

 Let’s try to model a function of the form

A y=d
o0 ©
O




Special Case: Constant

* Let’s try to model a function of the form
y=2a

y,=af(x,)+bg(x,)+ch(x)+---

* In this case, f(x;)=1 and we are solving

2.
a =
n



Special Case: Line

* Fit to y=a+bx

. f(x.)=1, g(x;)=x. So, solve:

1 a 1
1 X = .
;%ﬁij N
%~ =2
> |- Sy,
(ATA)—I _ L ‘xl _ ZX; n , ATb _ yl
3%, Xx; nxx, - (le.)2 22Xy,
a=2xi22yi_zxizxiyi b= N2X,Y; — 22X, 2,
nExl.2 — (le.)z ’ anl.2 — (le.)z




Variant: Weighted Least Squares




Weighted Least Squares

Common case: the (x,y;) have different
uncertainties associated with them

Want to give more weight to measurements
of which you are more certain

Weighted least squares minimization
min X2 - Ewi ()/i _f(xi))z

If “uncertainty” (stdev) is o, best to take W, = )/



Weighted Least Squares

« Define weight matrix W as

* Then solve weighted least squares via
A'WAx=A'"Wb



Understanding Error and Uncertainty




Error Estimates from Linear I.east Squares

* For many applications, finding model is
useless without estimate of its accuracy

* Residual is b — Ax
« Can compute < = (b — Ax)-(b — Ax)

* How do we tell whether answer is good?
— Lots of measurements

— x?is small

— x? increases quickly with perturbations to x (=2
standard variance of estimate is small)

— R? (“coefficient of determination”) is near 1



Error Estimates from Linear I.east Squares

« C=(ATA)'is called covariance of the data

 The “standard variance” in our estimate of x
IS 2

* This Is a matrix:
— Diagonal entries give variance of estimates of
components of x: e.g., var(a,)

— Off-diagonal entries explain mutual dependence:
e.g., cov(a,, a4)

* n—m is (# of samples) minus (# of degrees of
freedom in the fit): consult a statistician...



Hrror in Constant Model

Special Case:

Xz B z(yi - a)2

D et

standard deviation of data: o = \/

E(yi —Cl)2

n-—1

E_ (y; - a)2
standard error of a: O, =1/~ \n
\ J

“standard deviation
of mean”



Coeftficient of Determination

X
R* =1-
Eyi_y

R? : Proportion of observed variability that is explained
by the model

e.g., R? = 0.7 means 70% variability explained
For linear regression, R2 is Pearson’s correlation. \_

N o g

o O o> o 07 O
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Keep in mind...

In general, uncertainty in estimated parameters
goes down slowly: like 1/sqrt(# samples)

Formulas for special cases (like fitting a line)
are messy: simpler to think of ATAx=ATb form

Normal equations method often not numerically
stable: orthogonal decomposition methods
used instead

Linear least squares is not always the most
appropriate modeling technique...



Next time

Non-linear models
— Including logistic regression

Dealing with outliers and bad data

Practical considerations

— |s least squares an appropriate method for my
data?

Examples with Excel and Matlab



