
COS 318: Operating Systems

Deadlocks

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Announcements

  Project 2 due: Weds Oct 19
  Midterm Thursday Oct 27

  Sample on webpage…

  Facebook TechTalk
  The HipHop Virtual Machine
  Guilherme Ottoni *08
  Today at 5:30pm IN THIS ROOM!

  From last time:
  signal vs. broadcast
  Java: notify vs. notifyAll

Dennis Ritchie: 1941-2011

  With Bell Labs’ Ken Thompson, Ritchie helped develop
Unix, running on a DEC PDP-11, and released the first
edition of the operating system in 1971.

  Two years later, Ritchie came up with the C language,
building on B. C offered the concise syntax, functionality
and detail features necessary to make the language
work for programming an operating system. Most of
Unix's components were re-written in C, with the kernel
published the same year.

  Received the 1983 Turing Award and a 1997 US
National Medal of Technology
  both with Thompson for his work on C and Unix

3

4

Today’s Topic: Deadlock…

  Conditions for a deadlock
  Strategies to deal with deadlocks

5

Background Definitions

  Use processes and threads interchangeably
  Resources

  Preemptable: CPU (can be taken away)
  Non-preemptable: Disk, files, mutex, ... (can’t be taken away)

  Use a resource
  Request, Use, Release

  Starvation
  A process waits indefinitely

6

Deadlock

  A set of processes have a deadlock if each process is waiting
for an event that only another process in the set can cause

7

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
 eat;
 put down forks;
 think awhile;
}

Template for Philosopher

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

Naive Solution

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);

Does this work?

Simplest Example of Deadlock

Thread 0

P(R1)
P(R2)
V(R1)
V(R2)

Thread 1

P(R2)
P(R1)
V(R2)
V(R1)

Interleaving

P(R1)
P(R2)
P(R1) waits
P(R2) waits

R1 and R2 initially 1 (binary semaphore)

Conditions for Deadlock

  Mutually exclusive use of resources
  Binary semaphores R1 and R2

  Hold and wait
  Holding either R1 or R2 while waiting on other

  No pre-emption
  Neither R1 nor R2 are removed from their respective holding

Threads.

  Circular waiting
  Thread 0 waits for Thread 1 to V(R2) and

Thread 1 waits for Thread 0 to V(R1)

Dealing with Deadlock

It can be prevented by breaking one of the
prerequisite conditions:

  Mutually exclusive use of resources
  Example: Allowing shared access to read-only

files (readers/writers problem)
  circular waiting

  Example: Define an ordering on resources and
acquire them in order

  hold and wait
  no pre-emption

while (food available)
{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

 else {(P(fork[right(me)]); P(fork[left(me)]); }
 eat;
 V(fork[left(me)]); V(fork[right(me)]);

 think awhile;
}

Circular Wait Condition

Hold and Wait Condition

while (food available)
{ P(mutex);
 while (forks [me] != 2)

 {blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}
 forks [leftneighbor(me)] --; forks [rightneighbor(me)]--;
 V(mutex):
 eat;
 P(mutex);
 forks [leftneighbor(me)] ++; forks [rightneighbor(me)]++;
 if (blocking[leftneighbor(me)]) {
 blocking [leftneighbor(me)] = false; V(sleepy[leftneighbor(me)]); }
 if (blocking[rightneighbor(me)]) {
 blocking[rightneighbor(me)] = false; V(sleepy[rightneighbor(me)]); }
V(mutex);

 think awhile;
}

Starvation

The difference between deadlock and starvation is
subtle:
  Once a set of processes are deadlocked, there is

no future execution sequence that can get them
out of it.

  In starvation, there does exist some execution
sequence that is favorable to the starving
process although there is no guarantee it will
ever occur.

  Rollback and Retry solutions are prone to
starvation.

  Continuous arrival of higher priority processes is
another common starvation situation.

17

Resource Allocation Graph

  Process A is holding
resource R

  Process B requests
resource S

  A cycle in resource allocation
graph ⇒ deadlock

  If A requests for S while
holding R, and B requests for
R while holding S, then

A R

B S

A S

B R

How do you deal with multiple instances of a resource?

18

An Example

  A utility program
  Copy a file from tape to disk
  Print the file to printer

  Resources
  Tape
  Disk
  Printer

  A deadlock
  A holds tape and disk, then

requests for a printer
  B holds printer, then requests

for tape and disk

A

B

Tape

19

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

  Question
  Are all conditions necessary?

20

Eliminate Competition for Resources?

  If running A to completion and
then running B, there will be no
deadlock

  Generalize this idea for all
processes?

  Is it a good idea to develop a
CPU scheduling algorithm that
causes no deadlock?

A S

B R

Previous example

S

R R

S

21

Strategies

  Ignore the problem
  It is user’s fault

  Detection and recovery
  Fix the problem afterwards

  Dynamic avoidance
  Careful allocation

  Prevention
  Negate one of the four conditions

22

Ignore the Problem

  The OS kernel locks up
  Reboot

  Device driver locks up
  Remove the device
  Restart

  An application hangs (“not responding”)
  Kill the application and restart
  Familiar with this?

  An application ran for a while and then hang
  Checkpoint the application
  Change the environment (reboot OS)
  Restart from the previous checkpoint

23

Detection and Recovery

  Detection
  Scan resource graph
  Detect cycles

  Recovery (difficult)
  Kill process/threads (can you always do this?)
  Roll back actions of deadlocked threads

  What about the tape-disk-printer example?

24

Avoidance

  Safety Condition:
  It is not deadlocked
  There is some scheduling order in which every process can

run to completion (even if all request their max resources)

  Banker’s algorithm (Dijkstra 65)
  Single resource

•  Each process has a credit
•  Total resources may not satisfy all credits
•  Track resources assigned and needed
•  Check on each allocation for safety

  Multiple resources
•  Two matrices: allocated and needed
•  See textbook for details

25

Examples (Single Resource)

Has Max
P1 2 6
P2 2 3
P3 3 5

Total: 8

Free: 1

Has Max
P1 4 6
P2 1 3
P3 2 5

Free: 1

Free: 0 Free: 3 Free: 1

Has Max
P1 2 6
P2 3 3
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 3 5

Has Max
P1 2 6
P2 0 0
P3 5 5

Has Max
P1 2 6
P2 0 0
P3 0 0

Free: 6

?

26

Prevention: Avoid Mutual Exclusion

  Some resources are not physically
sharable
  Printer, tape, etc

  Some can be made sharable
  Read-only files, memory, etc
  Read/write locks

  Some can be virtualized by spooling
  Use storage to virtualize a resource into

multiple resources
  Use a queue to schedule
  Does this apply to all resources?

  What about the tape-disk-printer
example?

A B

Spooling

27

Prevention: Avoid Hold and Wait

  Two-phase locking
Phase I:
  Try to lock all resources at the beginning
Phase II:
  If successful, use the resources and release them
  Otherwise, release all resources and start over

  Application
  Telephone company’s circuit switching

  What about the tape-disk-printer example?

28

Prevention: No Preemption

 Make the scheduler be aware of resource allocation
 Method

  If the system cannot satisfy a request from a process holding
resources, preempt the process and release all resources

  Schedule it only if the system satisfies all resources

 Alternative
  Preempt the process holding the requested resource

 What about the tape-disk-printer example?

29

Prevention: No Circular Wait

  Impose an order of requests for all resources
  Method

  Assign a unique id to each resource
  All requests must be in an ascending order of the ids

  A variation
  Assign a unique id to each resource
  No process requests a resource lower than what it is holding

  What about the tape-disk-printer example?
  Can we prove that this method has no circular wait?

30

Which Is Your Favorite?

  Ignore the problem
  It is user’s fault

  Detection and recovery
  Fix the problem afterwards

  Dynamic avoidance
  Careful allocation

  Prevention (Negate one of the four conditions)
  Avoid mutual exclusion
  Avoid hold and wait
  No preemption
  No circular wait

31

Tradeoffs and Applications

  Ignore the problem for applications
  It is application developers’ job to deal with their deadlocks
  OS provides mechanisms to break applications’ deadlocks

  Kernel should not have any deadlocks
  Use prevention methods
  Most popular is to apply no-circular-wait principle everywhere

Break + Deadlock-related Story Time

  The Zax

32

OpenLDAP deadlock, bug #3494
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

33

OpenLDAP deadlock, fix #1
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 if (! try_lock(A)) break;
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

34

Changes the
algorithm, but
maybe that’s
OK

OpenLDAP deadlock, fix #2
{
 lock(A)
 ...
 lock(B)
 ...
 unlock(A)
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...
 lock(A)
 ...
 unlock(A)
 ...
 }
 }

 unlock(B)
}

{
 lock(A)
 ...
 lock(B)
 ...
 ...
 if (cursize > maxsize) {
 ...
 for (...)
 ...

 ...

 ...
 }
 }
 unlock(A)

 unlock(B)
}

35

36

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

Apache bug #42031
http://issues.apache.org/bugzilla/show_bug.cgi?id=42031
Summary: EventMPM child process freeze
Product: Apache httpd-2 Version: 2.3-HEAD
Platform: PC
OS/Version: Linux
Status: NEW
Severity: critical
Priority: P2
Component: Event MPM
AssignedTo: bugs@httpd.apache.org
ReportedBy: serai@lans-tv.com
Child process freezes with many downloading against MaxClients.

How to reproduce:

(1) configuration to httpd.conf StartServers 1 MaxClients 3 MinSpareThreads 1
MaxSpareThreads 3 ThreadsPerChild 3 MaxRequestsPerChild 0 Timeout 10 KeepAlive On
MaxKeepAliveRequests 0 KeepAliveTimeout 5

(2) put a large file "test.mpg" (about 200MB) on DocumentRoot

(3) apachectl start

(4) execute many downloading simultaneously. e.g. bash and wget:

 $ for ((i=0 ; i<20 ; i++)); do wget -b http://localhost/test.mpg; done;

 Then the child process often freezes. If not, try to download more.

(5) terminate downloading e.g. bash and wget: $ killall wget

(6) access to any file from web browser. However long you wait, server won't response.

37

Apache deadlock, bug #42031
listener_thread(...) {
 lock(timeout)
 ...
 lock(idlers)
 ...
 cond_wait (wait_for_idler, idlers)
 ...
 unlock(idlers)
 ...
 unlock(timeout)
}

worker_thread(...) {
 lock(timeout)
 ...
 unlock(timeout)
 ...
 lock (idlers)
 ...
 signal (wait_for_idler)
 ...
 unlock(idler)
 ...
}

38

39

Conditions for Deadlock

  Mutual exclusion condition
  Each resource is assigned to exactly one process

  Hold and Wait
  Processes holding resources can request new resources

  No preemption
  Resources cannot be taken away

  Circular chain of requests
  One process waits for another in a circular fashion

40

Summary

  Deadlock conditions
  Mutual exclusion
  Hold and wait
  No preemption
  Circular chain of requests

  Strategies to deal with deadlocks
  Simpler ways are to negate one of the four conditions

