
COS 318: Operating Systems

Semaphores, Monitors and
Condition Variables

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

2

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom

Mutual Exclusion and Critical Sections

  A critical section is a piece of code in which a process or
thread accesses a common (shared or global) resource.

  Mutual Exclusion algorithms are used to avoid the
simultaneous use of a common resource, such as a
global variable.

  In the buying milk example, what is the portion that
requires mutual exclusion?

3

Conditions for a good Mutex solution:

  No two processes may be simultaneously inside their
critical regions.

  No assumptions may be made about speeds or the
number of CPUs.

  No process running outside its critical region may block
other processes.

  No process should have to wait forever to enter its
critical region.

4

5

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

6

Semaphores (Dijkstra, 1965)

  Initialization
  Initialize a value atomically

  P (or Down or Wait) definition
  Atomic operation
  Wait for semaphore to become positive and then decrement

P(s){
 while (s <= 0)
 ;
 s--;
}

  V (or Up or Signal) definition
  Atomic operation
  Increment semaphore by 1

V(s){
 s++;
}

The atomicity and the waiting
can be implemented by either
busywaiting or blocking
solutions.

Analogy: Think about semaphore
value as the number of empty
chairs at a table…

An aside on Dijkstra…

  Quite a personality…Avoided owning a computer for
several decades into his career…Won the 1972 Turing
Award…

  Created a series of numbered memos with his thoughts
on computing topics
  Now Archived at U. Texas:
  http://www.cs.utexas.edu/~EWD/
  Example: “A Tutorial on the Split Binary Semaphore”

•  http://www.cs.utexas.edu/~EWD/ewd07xx/EWD703.PDF
  Some are short proofs or papers, others are jokes or rants.
  Go-to statement considered harmful: Published in CACM

1968, also as EWD215…

7

Semaphores can be used for…

  Binary semaphores can provide mutual exclusion
(solution of critical section problem)

  Counting semaphores can represent a resource with
multiple instances (e.g. solving producer/consumer
problem)

  Signaling events (persistent events that stay
relevant even if nobody listening right now)

Classic Synchronization Problems

  There are a number of “classic” problems that represent
a class of synchronization situations

  Critical Section problem
  Producer/Consumer problem
  Reader/Writer problem
  5 Dining Philosophers
  Why? Once you know the “generic” solutions, you can

recognize other special cases in which to apply them
(e.g., this is just a version of the reader/writer problem)

Producer / Consumer

Producer:
while(whatever)
{
locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}

Producer / Consumer (With Counting
Semaphores)
Producer:
while(whatever)
{
locally generate item

fill empty buffer with item

}

Consumer:
while(whatever)
{

get item from full buffer

use item
}

P(emptybuf);

V(fullbuf);

P(fullbuf);

V(emptybuf);

Semaphores: emptybuf initially N; fullbuf initially 0;

Producer Consumer (Bounded Buffer)
with Semaphores: More detail…

  Init: emptyCount = N; fullCount = 0; mutex = 1
 Are P(mutex)and V(mutex) necessary?

producer() {
 while (1) {
 produce an item
 P(emptyBuf);

 P(mutex);
 put the item in buffer
 V(mutex);

 V(fullBuf);
 }
}

consumer() {
 while (1) {
 P(fullBuf);

 P(mutex);
 take an item from buffer
 V(mutex);

 V(emptyBuf);
 consume the item
 }
}

13

Example: Interrupt Handler

  A device thread works with an interrupt handler
  What to do with shared data?
  What if “m” is held by another thread or by itself?

Device thread

...
Acquire(m);

...

Release(m);
...

Interrupt handler

...
Acquire(m);

...

Release(m);
...

?

14

Interrupted Thread

…

Interrupt
…

Use Semaphore to Signal

Interrupt handler
...

V(s);
...

Device thread
while (1) {
 P(s);
 Acquire(m);
 ...
 deal with interrupt
 ...
 Release(m);
}

Init(s,0);

Semaphores Are Not Always Convenient

  It is a consumer and producer problem
  Dequeue(q) should block until q is not empty

 Semaphores are difficult to use: orders are important

Enqueue(q, item)
{
 Acquire(mutex);
 put item into q;
 Release(mutex);
}

Dequeue(q)
{
 Acquire(mutex);
 take an item from q;
 Release(mutex);
 return item;
}

 A shared queue has Enqueue and Dequeue:

16

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

17

The Big Picture

OS codes and concurrent applications

High-Level
Atomic API

Mutex Semaphores Monitors Send/Recv

Low-Level
Atomic Ops

Load/store
Interrupt

disable/enable
Test&Set Other atomic

instructions

Interrupts
(I/O, timer) Multiprocessors CPU

scheduling

Monitor: Hide Mutual Exclusion

 Brinch-Hansen (73), Hoare (74)
 Procedures are mutual exclusive

Shared
data

...

Queue of waiting processes
trying to enter the monitor

procedures

Condition Variables in A Monitor

 Wait(condition)
  Block on “condition”

 Signal(condition)
  Wakeup a blocked process

on “condition”
Shared

data

...
Entry queue

procedures

x
y

Queues
associated
with x, y
conditions

Monitor Abstraction

  Encapsulates shared
data and operations
with mutual exclusive
use of the object (an
associated lock).

  Associated Condition
Variables with
operations of Wait
and Signal.

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

Condition Variables

  We build the monitor abstraction out of a lock
(for the mutual exclusion) and a set of
associated condition variables.

  Wait on condition: releases lock held by
caller, caller goes to sleep on condition’s
queue.
When awakened, it must reacquire lock.

  Signal condition: wakes up one waiting
thread.

  Broadcast: wakes up all threads waiting on
this condition.

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
if (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Monitor Abstraction

monitor_lock

enQ deQ

init
shared data

en
try

 q
ue

ue

no
tE

m
pt

y

conditions

EnQ:{acquire (lock);
if (head == null)

{head = item;
signal (lock, notEmpty);}

else tail->next = item;
tail = item;
release(lock);}

deQ:{acquire (lock);
while (head == null)

wait (lock, notEmpty);
 item = head;
 if (tail == head) tail = null;
 head=item->next;
release(lock);}

Producer-Consumer with Monitors

monitor ProdCons
 condition full, empty;

 procedure Enter;
 begin
 if (buffer is full)
 wait(full);
 put item into buffer;
 if (only one item)
 signal(empty);
 end;

 procedure Remove;
 begin
 if (buffer is empty)
 wait(empty);
 remove an item;
 if (buffer was full)
 signal(full);
 end;

procedure Producer
begin
 while true do
 begin
 produce an item
 ProdCons.Enter();
 end;
end;

procedure Consumer
begin
 while true do
 begin
 ProdCons.Remove();
 consume an item;
 end;
end;

29

Options of the Signaler

  Run the signaled thread immediately and suspend the
current one (Hoare)
  If the signaler has other work to do, life is complex
  It is difficult to make sure there is nothing to do, because the

signal implementation is not aware of how it is used
  It is easy to prove things

  Exit the monitor (Hansen)
  Signal must be the last statement of a monitor procedure

  Continues its execution (Mesa)
  Easy to implement
  But, the condition may not be true when the awaken process

actually gets a chance to run

30

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

Mesa Style “Monitor” (Birrell’s Paper)

  Associate a condition variable with a mutex
  Wait(mutex, condition)

  Atomically unlock the mutex and enqueued on the condition
variable (block the thread)

  Re-lock the lock when it is awakened
  Signal(condition)

  No-op if there is no thread blocked on the condition variable
  Wake up at least one if there are threads blocked

  Broadcast(condition)
  Wake up all waiting threads

  Original Mesa paper
  B. Lampson and D. Redell. Experience with processes and

monitors in Mesa. Comm. ACM 23, 2 (feb 1980), pp 106-117.

32

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter(Item item) {
 Acquire(lock);
 if (count==N)
 Wait(lock, full);
 insert item into buffer
 count++;
 if (count==1)
 Signal(empty);
 Release(lock);
}

Remove(Item item) {
 Acquire(lock);
 if (!count)
 Wait(lock, empty);
 remove item from buffer
 count--;
 if (count==N-1)
 Signal(full);
 Release(lock);
}

Any issues with this?

33

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter(Item item) {
 Acquire(lock);
 while (count==N)
 Wait(lock, full);
 insert item into buffer
 count++;
 if (count==1)
 Signal(empty);
 Release(lock);
}

Remove(Item item) {
 Acquire(lock);
 while (!count)
 Wait(lock, empty);
 remove item from buffer
 count--;
 if (count==N-1)
 Signal(full);
 Release(lock);
}

34

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

35

The Programming Idiom

  Waiting for a resource

Acquire(mutex);
while (no resource)
 wait(mutex, cond);

...

(use the resource)
...
Release(mutex);

  Make a resource available

Acquire(mutex);
...

(make resource available)
...

Signal(cond);
/* or Broadcast(cond);
Release(mutex);

Revisit the Motivation Example

 Does this work?

Enqueue(Queue q,
 Item item) {

 Acquire(lock);

 insert an item to q;

 Signal(Empty);
 Release(lock);
}

Item GetItem(Queue q) {
 Item item;

 Acquire(lock);
 while (q is empty)
 Wait(lock, Empty);

 remove an item;

 Release(lock);
 return item;
}

37

Condition Variables Primitives

 Wait(mutex, cond)
  Enter the critical section

(min busy wait)
  Release mutex
  Save state to TCB, mark

as blocked
  Put my TCB on cond’s

queue
  Exit the critical section
  Call the scheduler

  Waking up:
•  Acquire mutex
•  Resume

  Signal(cond)
  Enter the critical section

(min busy wait)
  Wake up a TCB in cond’s

queue
  Exit the critical section

More on Mesa-Style Monitor

  Signaler continues execution
  Waiters simply put on ready queue, with no special

priority
  Must reevaluate the condition

  No constraints on when the waiting thread/process must
run after a “signal”

  Simple to introduce a broadcast: wake up all
  No constrains on signaler

  Can execute after signal call (Hansen’s cannot)
  Do not need to relinquish control to awaken thread/process

Evolution of Monitors
  Brinch-Hansen (73) and Hoare Monitor (74)

  Concept, but no implementation
  Requires Signal to be the last statement (Hansen)
  Requires relinquishing CPU to signaler (Hoare)

  Mesa Language (77)
  Monitor in language, but signaler keeps mutex and CPU
  Waiter simply put on ready queue, with no special priority

  Modula-2+ (84) and Modula-3 (88)
  Explicit LOCK primitive
  Mesa-style monitor

  Pthreads (95)
  Started standard effort around 1989
  Defined by ANSI/IEEE POSIX 1003.1 Runtime library

  Java threads
  Use ‘synchronized’ primitive for mutual exclusion
  Wait() and notify() use implicit per-class condition variable

40

Today’s Topics

  Semaphores
  Monitors
  Mesa-style monitors
  Programming idiom
  Barriers

41

Example: A Simple Barrier

  Thread A and Thread B
want to meet at a
particular point and then
go on

  How would you program
this with a monitor?

Thread A Thread B

42

Using Semaphores as A Barrier

  Use two semaphore?
 init(s1, 0);
init(s2, 0);

  What about more than two threads?

Thread A
…

V(s1);
P(s2);

…

Thread B
…

V(s2);
P(s1);

…

43

Barrier Primitive

  Functions
  Take a barrier variable
  Broadcast to n-1 threads
  When barrier variable has

reached n, go forward
  Hardware support on

some parallel machines

Thread 1
…

Barrier(b);
…

Thread n
…

Barrier(b);
…

. . .

Barrier
variable

44

Equivalence

 Semaphores
  Good for signaling
  Not good for mutex because it is easy to introduce a bug

 Monitors
  Good for scheduling and mutex
  Maybe costly for a simple signaling

45

Summary

  Semaphores
  Monitors
  Mesa-style monitor and its idiom
  Barriers

5 Dining Philosophers

Philosopher 0

Philosopher 1

Philosopher 2

Philosopher 3

Philosopher 4

while(food available)
{pick up 2 adj. forks;
 eat;
 put down forks;
 think awhile;
}

Template for Philosopher

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

Naive Solution

while (food available)
{ /*pick up forks*/

eat;
 /*put down forks*/

think awhile;
}

P(fork[left(me)]);
P(fork[right(me)]);

V(fork[left(me)]);
V(fork[right(me)]);

Does this work?

Simplest Example of Deadlock

Thread 0

P(R1)
P(R2)
V(R1)
V(R2)

Thread 1

P(R2)
P(R1)
V(R2)
V(R1)

Interleavin
g

P(R1)
P(R2)
P(R1)

waits
P(R2)

waits
R1 and R2 initially 1 (binary semaphore)

Conditions for Deadlock

  Mutually exclusive use of resources
  Binary semaphores R1 and R2

  Circular waiting
  Thread 0 waits for Thread 1 to V(R2) and

Thread 1 waits for Thread 0 to V(R1)

  Hold and wait
  Holding either R1 or R2 while waiting on other

  No pre-emption
  Neither R1 nor R2 are removed from their respective holding

Threads.

Philosophy 101
(or why 5DP is interesting)

  How to eat with your Fellows without causing
Deadlock.
  Circular arguments (the circular wait condition)
  Not giving up on firmly held things (no preemption)
  Infinite patience with Half-baked schemes (hold

some & wait for more)
  Why Starvation exists and what we can do about it.

Dealing with Deadlock

It can be prevented by breaking one of the
prerequisite conditions:

  Mutually exclusive use of resources
  Example: Allowing shared access to read-only

files (readers/writers problem)
  circular waiting

  Example: Define an ordering on resources and
acquire them in order

  hold and wait
  no pre-emption

while (food available)
{ if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);}

 else {(P(fork[right(me)]); P(fork[left(me)]); }
 eat;
 V(fork[left(me)]); V(fork[right(me)]);

 think awhile;
}

Circular Wait Condition

Hold and Wait Condition

while (food available)
{ P(mutex);
 while (forks [me] != 2)

 {blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);}
 forks [leftneighbor(me)] --; forks [rightneighbor(me)]--;
 V(mutex):
 eat;
 P(mutex); forks [leftneighbor(me)] ++; forks [rightneighbor(me)]++;
 if (blocking[leftneighbor(me)]) {blocking [leftneighbor(me)] = false; V
(sleepy[leftneighbor(me)]); }

 if (blocking[rightneighbor(me)]) {blocking[rightneighbor(me)] = false; V
(sleepy[rightneighbor(me)]); } V(mutex);

 think awhile;
}

Starvation

The difference between deadlock and starvation is
subtle:
  Once a set of processes are deadlocked, there is

no future execution sequence that can get them
out of it.

  In starvation, there does exist some execution
sequence that is favorable to the starving
process although there is no guarantee it will
ever occur.

  Rollback and Retry solutions are prone to
starvation.

  Continuous arrival of higher priority processes is
another common starvation situation.

5DP - Monitor Style

Boolean eating [5];
Lock forkMutex;
Condition forksAvail;

void PickupForks (int i) {
 forkMutex.Acquire();
 while (eating[(i-1)%5] || eating
[(i+1)%5])
 forksAvail.Wait(&forkMutex);
 eating[i] = true;
 forkMutex.Release();

}

void PutdownForks (int i) {
 forkMutex.Acquire();
 eating[i] = false;
 forksAvail.Broadcast
(&forkMutex);
 forkMutex.Release();

}

What about this?

while (food available)
{ forkMutex.Acquire();
 while (forks [me] != 2) {blocking[me]=true;

 forkMutex.Release(); sleep(); forkMutex.Acquire();}
 forks [leftneighbor(me)]--; forks [rightneighbor(me)]--;
 forkMutex.Release():
 eat;
 forkMutex.Acquire();
 forks[leftneighbor(me)] ++; forks [rightneighbor(me)]++;
 if (blocking[leftneighbor(me)] || blocking[rightneighbor(me)])
 wakeup (); forkMutex.Release();

 think awhile;
}

Classic Synchronization Problems

  There are a number of “classic” problems that represent
a class of synchronization situations

  Critical Section problem
  Producer/Consumer problem
  Reader/Writer problem
  5 Dining Philosophers
  Why? Once you know the “generic” solutions, you can

recognize other special cases in which to apply them
(e.g., this is just a version of the reader/writer problem)

Readers/Writers Problem

Synchronizing access to a file or data record in a database
such that any number of threads requesting read-only
access are allowed but only one thread requesting write
access is allowed, excluding all readers.

