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Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 



Mutual Exclusion and Critical Sections 

  A critical section is a piece of code in which a process or 
thread accesses a common (shared or global) resource. 

  Mutual Exclusion algorithms are used to avoid the 
simultaneous use of a common resource, such as a 
global variable. 

  In the buying milk example, what is the portion that 
requires mutual exclusion?   
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Conditions for a good Mutex solution: 

  No two processes may be simultaneously inside their 
critical regions. 

  No assumptions may be made about speeds or the 
number of CPUs. 

  No process running outside its critical region may block 
other processes. 

  No process should have to wait forever to enter its 
critical region. 
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The Big Picture 

OS codes and concurrent applications 

High-Level 
Atomic API 

Mutex Semaphores Monitors Send/Recv 

Low-Level 
Atomic Ops 

Load/store 
Interrupt 

disable/enable 
Test&Set Other atomic  

instructions 

Interrupts 
(I/O, timer) Multiprocessors CPU 

scheduling 
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Semaphores (Dijkstra, 1965) 

  Initialization 
  Initialize a value atomically 

  P (or Down or Wait) definition 
  Atomic operation 
  Wait for semaphore to become positive and then decrement 

P(s){ 
  while (s <= 0) 
    ; 
  s--; 
} 

  V (or Up or Signal) definition 
  Atomic operation 
  Increment semaphore by 1 

V(s){ 
  s++; 
} 

The atomicity and the waiting 
can be implemented by either 
busywaiting or blocking 
solutions. 

Analogy: Think about semaphore 
value as the number of empty 
chairs at a table… 



An aside on Dijkstra… 

  Quite a personality…Avoided owning a computer for 
several decades into his career…Won the 1972 Turing 
Award… 

  Created a series of numbered memos with his thoughts 
on computing topics  
  Now Archived at U. Texas: 
  http://www.cs.utexas.edu/~EWD/ 
  Example: “A Tutorial on the Split Binary Semaphore” 

•  http://www.cs.utexas.edu/~EWD/ewd07xx/EWD703.PDF 
  Some are short proofs or papers, others are jokes or rants. 
  Go-to statement considered harmful: Published in CACM 

1968, also as EWD215… 
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Semaphores can be used for… 

  Binary semaphores can provide mutual exclusion 
(solution of critical section problem) 

  Counting semaphores can represent a resource with 
multiple instances (e.g. solving producer/consumer 
problem) 

  Signaling events  (persistent events that stay 
relevant even if nobody listening right now) 



Classic Synchronization Problems 

  There are a number of “classic” problems that represent 
a class of synchronization situations 

  Critical Section problem 
  Producer/Consumer problem 
  Reader/Writer problem 
  5 Dining Philosophers 
  Why?  Once you know the “generic” solutions, you can 

recognize other special cases in which to apply them 
(e.g., this is just a version of the reader/writer problem) 



Producer / Consumer 

Producer: 
while(whatever) 
{   
locally generate item 

fill empty buffer with item 

}   

Consumer: 
while(whatever) 
{ 

get item from full buffer 

use item 
} 



Producer / Consumer (With Counting 
Semaphores) 
Producer: 
while(whatever) 
{   
locally generate item 

fill empty buffer with item 

}   

Consumer: 
while(whatever) 
{ 

get item from full buffer 

use item 
} 

P(emptybuf); 

V(fullbuf); 

P(fullbuf); 

V(emptybuf); 

Semaphores: emptybuf initially N; fullbuf initially 0; 



Producer Consumer (Bounded Buffer) 
with Semaphores: More detail… 

  Init: emptyCount = N; fullCount = 0; mutex = 1 
 Are P(mutex)and V(mutex) necessary? 

producer() { 
  while (1) { 
    produce an item 
    P(emptyBuf); 

    P(mutex); 
    put the item in buffer 
    V(mutex); 

    V(fullBuf); 
  } 
} 

consumer() { 
  while (1) { 
    P(fullBuf); 

    P(mutex); 
    take an item from buffer 
    V(mutex); 

    V(emptyBuf); 
    consume the item 
  } 
} 
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Example: Interrupt Handler 

  A device thread works with an interrupt handler 
  What to do with shared data? 
  What if “m” is held by another thread or by itself? 

Device thread 

... 
Acquire(m); 

... 

Release(m); 
... 

Interrupt handler 

... 
Acquire(m); 

... 

Release(m); 
... 

? 
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Interrupted Thread 

… 

Interrupt 
… 

Use Semaphore to Signal  

Interrupt handler 
... 

V(s); 
... 

Device thread 
while (1) { 
  P(s); 
  Acquire(m); 
  ... 
  deal with interrupt 
  ... 
  Release(m); 
} 

Init(s,0); 



Semaphores Are Not Always Convenient 

  It is a consumer and producer problem 
  Dequeue(q) should block until q is not empty 

 Semaphores are difficult to use: orders are important 

Enqueue(q, item) 
{ 
  Acquire(mutex); 
  put item into q; 
  Release(mutex); 
} 

Dequeue(q) 
{ 
  Acquire(mutex); 
  take an item from q; 
  Release(mutex); 
  return item; 
} 

 A shared queue has Enqueue and Dequeue: 
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Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 
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The Big Picture 

OS codes and concurrent applications 

High-Level 
Atomic API 

Mutex Semaphores Monitors Send/Recv 

Low-Level 
Atomic Ops 

Load/store 
Interrupt 

disable/enable 
Test&Set Other atomic  

instructions 

Interrupts 
(I/O, timer) Multiprocessors CPU 

scheduling 



Monitor: Hide Mutual Exclusion 

 Brinch-Hansen (73), Hoare (74) 
 Procedures are mutual exclusive 

Shared 
data 

... 

Queue of waiting processes 
trying to enter the monitor 

procedures 



Condition Variables in A Monitor 

 Wait( condition ) 
  Block on “condition” 

 Signal( condition ) 
  Wakeup a blocked process 

on “condition” 
Shared 

data 

... 
Entry queue 

procedures 

x 
y 

Queues 
associated 
with x, y 
conditions 



Monitor Abstraction 

  Encapsulates shared 
data and operations 
with mutual exclusive 
use of the object (an 
associated lock). 

  Associated Condition 
Variables with 
operations of Wait 
and Signal. 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 



Condition Variables 

  We build the monitor abstraction out of a lock 
(for the mutual exclusion) and a set of 
associated condition variables. 

  Wait on condition: releases lock held by 
caller, caller goes to sleep on condition’s 
queue.     
When awakened, it must reacquire lock. 

  Signal condition: wakes up one waiting 
thread.   

  Broadcast: wakes up all threads waiting on 
this condition. 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
if (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Monitor Abstraction 

monitor_lock 

enQ deQ 

init 
shared data 

en
try

 q
ue

ue
 

no
tE

m
pt

y 

conditions 

EnQ:{acquire (lock); 
if (head == null) 

{head = item; 
signal (lock, notEmpty);} 

else tail->next = item; 
tail = item;  
release(lock);} 

deQ:{acquire (lock); 
while (head == null) 

wait (lock, notEmpty); 
 item = head; 
 if (tail == head) tail = null;  
 head=item->next; 
release(lock);} 



Producer-Consumer with Monitors 

monitor ProdCons 
  condition full, empty; 

  procedure Enter; 
  begin 
    if (buffer is full)  
      wait(full); 
    put item into buffer; 
    if (only one item)  
      signal(empty); 
  end; 

  procedure Remove; 
  begin 
    if (buffer is empty)  
      wait(empty); 
    remove an item; 
    if (buffer was full)  
      signal(full); 
  end; 

procedure Producer 
begin 
  while true do 
  begin 
    produce an item 
    ProdCons.Enter(); 
  end; 
end; 

procedure Consumer 
begin 
  while true do 
  begin 
    ProdCons.Remove(); 
    consume an item; 
  end; 
end; 
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Options of the Signaler 

  Run the signaled thread immediately and suspend the 
current one (Hoare) 
  If the signaler has other work to do, life is complex 
  It is difficult to make sure there is nothing to do, because the 

signal implementation is not aware of how it is used 
  It is easy to prove things 

  Exit the monitor (Hansen) 
  Signal must be the last statement of a monitor procedure 

  Continues its execution (Mesa) 
  Easy to implement 
  But, the condition may not be true when the awaken process 

actually gets a chance to run 
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Today’s Topics 

  Semaphores 
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  Mesa-style monitors 
  Programming idiom 
  Barriers 



Mesa Style “Monitor” (Birrell’s Paper) 

  Associate a condition variable with a mutex 
  Wait( mutex, condition ) 

  Atomically unlock the mutex and enqueued on the condition 
variable (block the thread) 

  Re-lock the lock when it is awakened 
  Signal( condition ) 

  No-op if there is no thread blocked on the condition variable 
  Wake up at least one if there are threads blocked 

  Broadcast( condition ) 
  Wake up all waiting threads 

  Original Mesa paper 
  B. Lampson and D. Redell.  Experience with processes and 

monitors in Mesa.  Comm. ACM 23, 2 (feb 1980), pp 106-117. 
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Consumer-Producer with Mesa-Style Monitor 

static count = 0; 
static Cond full, empty; 
static Mutex lock; 

Enter(Item item) { 
  Acquire(lock); 
  if (count==N) 
    Wait(lock, full); 
  insert item into buffer 
  count++; 
  if (count==1) 
    Signal(empty); 
  Release(lock); 
} 

Remove(Item item) { 
  Acquire(lock); 
  if (!count) 
    Wait(lock, empty); 
  remove item from buffer 
  count--; 
  if (count==N-1) 
    Signal(full); 
  Release(lock); 
} 

Any issues with this? 
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Consumer-Producer with Mesa-Style Monitor 

static count = 0; 
static Cond full, empty; 
static Mutex lock; 

Enter(Item item) { 
  Acquire(lock); 
  while (count==N) 
    Wait(lock, full); 
  insert item into buffer 
  count++; 
  if (count==1) 
    Signal(empty); 
  Release(lock); 
} 

Remove(Item item) { 
  Acquire(lock); 
  while (!count) 
    Wait(lock, empty); 
  remove item from buffer 
  count--; 
  if (count==N-1) 
    Signal(full); 
  Release(lock); 
} 



34 

Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 



35 

The Programming Idiom 

  Waiting for a resource 

Acquire( mutex ); 
while ( no resource ) 
 wait( mutex, cond ); 

... 

(use the resource) 
...  
Release( mutex); 

  Make a resource available 

Acquire( mutex ); 
... 

(make resource available) 
... 

Signal( cond ); 
/* or Broadcast( cond ); 
Release( mutex); 



Revisit the Motivation Example 

 Does this work? 

Enqueue(Queue q,  
        Item item) { 

  Acquire(lock); 

  insert an item to q; 

  Signal(Empty); 
  Release(lock); 
} 

Item GetItem(Queue q) { 
  Item item; 

  Acquire( lock ); 
  while ( q is empty ) 
    Wait( lock, Empty); 

    remove an item; 

  Release( lock ); 
  return item; 
} 
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Condition Variables Primitives 

 Wait( mutex, cond ) 
  Enter the critical section 

(min busy wait)  
  Release mutex 
  Save state to TCB, mark 

as blocked 
  Put my TCB on cond’s 

queue 
  Exit the critical section 
  Call the scheduler 

  Waking up: 
•  Acquire mutex 
•  Resume 

  Signal( cond ) 
  Enter the critical section 

(min busy wait)  
  Wake up a TCB in cond’s 

queue 
  Exit the critical section 



More on Mesa-Style Monitor 

  Signaler continues execution 
  Waiters simply put on ready queue, with no special 

priority 
  Must reevaluate the condition 

  No constraints on when the waiting thread/process must 
run after a “signal” 

  Simple to introduce a broadcast: wake up all 
  No constrains on signaler 

  Can execute after signal call (Hansen’s cannot) 
  Do not need to relinquish control to awaken thread/process 



Evolution of Monitors 
  Brinch-Hansen (73) and Hoare Monitor (74) 

  Concept, but no implementation 
  Requires Signal to be the last statement (Hansen) 
  Requires relinquishing CPU to signaler (Hoare)  

  Mesa Language (77) 
  Monitor in language, but signaler keeps mutex and CPU 
  Waiter simply put on ready queue, with no special priority 

  Modula-2+ (84) and Modula-3 (88) 
  Explicit LOCK primitive 
  Mesa-style monitor 

  Pthreads (95) 
  Started standard effort around 1989 
  Defined by ANSI/IEEE POSIX 1003.1 Runtime library 

  Java threads  
  Use ‘synchronized’ primitive for mutual exclusion 
  Wait() and notify() use implicit per-class condition variable 
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Example: A Simple Barrier 

  Thread A and Thread B 
want to meet at a 
particular point and then 
go on 

  How would you program 
this with a monitor? 

Thread A Thread B 
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Using Semaphores as A Barrier 

  Use two semaphore? 
 init(s1, 0); 
init(s2, 0); 

  What about more than two threads? 

Thread A 
… 

V(s1); 
P(s2); 

… 

Thread B 
… 

V(s2); 
P(s1); 

… 
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Barrier Primitive 

  Functions 
  Take a barrier variable 
  Broadcast to n-1 threads 
  When barrier variable has 

reached n, go forward 
  Hardware support on 

some parallel machines 

Thread 1 
… 

Barrier(b); 
… 

Thread n 
… 

Barrier(b); 
… 

. . . 

Barrier 
variable 
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Equivalence 

 Semaphores 
  Good for signaling 
  Not good for mutex because it is easy to introduce a bug 

 Monitors 
  Good for scheduling and mutex 
  Maybe costly for a simple signaling 
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Summary 

  Semaphores 
  Monitors 
  Mesa-style monitor and its idiom 
  Barriers 



5 Dining Philosophers 

Philosopher 0 

Philosopher 1 

Philosopher 2 

Philosopher 3 

Philosopher 4 

while(food available) 
{pick up 2 adj. forks; 
  eat; 
  put down forks; 
  think awhile; 
} 



Template for Philosopher 

while (food available) 
{          /*pick up forks*/ 

eat; 
        /*put down forks*/ 

think awhile; 
} 



Naive Solution 

while (food available) 
{          /*pick up forks*/ 

eat; 
        /*put down forks*/ 

think awhile; 
} 

P(fork[left(me)]); 
P(fork[right(me)]); 

V(fork[left(me)]); 
V(fork[right(me)]); 

Does this work? 



Simplest Example of Deadlock 

Thread 0 

P(R1) 
P(R2) 
V(R1) 
V(R2) 

Thread 1 

P(R2) 
P(R1) 
V(R2) 
V(R1) 

Interleavin
g 

P(R1) 
P(R2) 
P(R1) 

waits 
P(R2) 

waits 
R1 and R2 initially 1 (binary semaphore) 



Conditions for Deadlock 

  Mutually exclusive use of resources 
  Binary semaphores R1 and R2 

  Circular waiting 
  Thread 0 waits for Thread 1 to V(R2) and  

Thread 1 waits for Thread 0 to V(R1) 

  Hold and wait  
  Holding either R1 or R2 while waiting on other  

  No pre-emption 
  Neither R1 nor R2 are removed from their respective holding 

Threads. 



Philosophy 101 
(or why 5DP is interesting) 

  How to eat with your Fellows without causing 
Deadlock. 
  Circular arguments (the circular wait condition) 
  Not giving up on firmly held things (no preemption) 
  Infinite patience with Half-baked schemes  (hold 

some & wait for more) 
  Why Starvation exists and what we can do about it. 



Dealing with Deadlock 

It can be prevented by breaking one of the 
prerequisite conditions: 

  Mutually exclusive use of resources 
  Example: Allowing shared access to read-only 

files (readers/writers problem) 
  circular waiting 

  Example: Define an ordering on resources and 
acquire them in order  

  hold and wait   
  no pre-emption 



while (food available) 
{   if (me == 0) {P(fork[left(me)]); P(fork[right(me)]);} 

  else {(P(fork[right(me)]); P(fork[left(me)]); } 
 eat; 
  V(fork[left(me)]); V(fork[right(me)]);   

 think awhile; 
} 

Circular Wait Condition 



Hold and Wait Condition 

while (food available) 
{  P(mutex); 
  while (forks [me] != 2)  

  {blocking[me] = true; V(mutex); P(sleepy[me]); P(mutex);} 
 forks [leftneighbor(me)] --;  forks [rightneighbor(me)]--; 
 V(mutex): 
 eat; 
 P(mutex); forks [leftneighbor(me)] ++;  forks [rightneighbor(me)]++; 
 if (blocking[leftneighbor(me)]) {blocking [leftneighbor(me)] = false; V
(sleepy[leftneighbor(me)]); } 

 if (blocking[rightneighbor(me)]) {blocking[rightneighbor(me)] = false; V
(sleepy[rightneighbor(me)]); }     V(mutex);   

     think awhile;  
} 



Starvation 

The difference between deadlock and starvation is 
subtle: 
  Once a set of processes are deadlocked, there is 

no future execution sequence that can get them 
out of it. 

  In starvation, there does exist some execution 
sequence that is favorable to the starving 
process although there is no guarantee it will 
ever occur. 

  Rollback and Retry solutions are prone to 
starvation. 

  Continuous arrival of higher priority processes is 
another common starvation situation. 



5DP - Monitor Style 

Boolean eating [5]; 
Lock forkMutex; 
Condition forksAvail; 

void PickupForks (int i) { 
 forkMutex.Acquire( ); 
 while ( eating[(i-1)%5] || eating
[(i+1)%5] )  
      forksAvail.Wait(&forkMutex); 
 eating[i] = true; 
 forkMutex.Release( ); 

} 

void PutdownForks (int i) { 
 forkMutex.Acquire( ); 
 eating[i] = false; 
 forksAvail.Broadcast
(&forkMutex); 
 forkMutex.Release( ); 

} 



What about this? 

while (food available) 
{  forkMutex.Acquire( ); 
  while (forks [me] != 2) {blocking[me]=true; 

  forkMutex.Release( ); sleep( ); forkMutex.Acquire( );} 
 forks [leftneighbor(me)]--;  forks [rightneighbor(me)]--; 
  forkMutex.Release( ): 
 eat; 
  forkMutex.Acquire( ); 
 forks[leftneighbor(me)] ++;  forks [rightneighbor(me)]++; 
 if (blocking[leftneighbor(me)] || blocking[rightneighbor(me)]) 
         wakeup ( );  forkMutex.Release( ); 

 think awhile; 
} 



Classic Synchronization Problems 

  There are a number of “classic” problems that represent 
a class of synchronization situations 

  Critical Section problem 
  Producer/Consumer problem 
  Reader/Writer problem 
  5 Dining Philosophers 
  Why?  Once you know the “generic” solutions, you can 

recognize other special cases in which to apply them 
(e.g., this is just a version of the reader/writer problem) 



Readers/Writers Problem 

Synchronizing access to a file or data record in a database 
such that any number of threads requesting read-only 
access are allowed but only one thread requesting write 
access is allowed, excluding all readers. 


