COS 318: Operating Systems

Semaphores, Monitors and
Condition Variables

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318/

Today’'s Topics

Semaphores
Monitors

Mesa-style monitors
Programming idiom

B

X

.;2 %
w

Mutual Exclusion and Critical Sections

®
A critical section is a piece of code in which a process or

thread accesses a common (shared or global) resource.

Mutual Exclusion algorithms are used to avoid the

simultaneous use of a common resource, such as a
global variable.

In the buying milk example, what is the portion that
requires mutual exclusion?

(IGET)

Conditions for a good Mutex solution:

No two processes may be simultaneously inside their
critical regions.

No assumptions may be made about speeds or the
number of CPUs.

No process running outside its critical region may block
other processes.

No process should have to wait forever to enter its
critical region.

The Big Picture

OS codes and concurrent applications

High-Level
Atlgmic A\\/PI Mutex Semaphores Monitors Send/Recv
Low-Level I i
OW_ eve Load/store , nterrupt Test&Set cher atp mic
Atomic Ops disable/enable instructions
Interrupts CPU

Multiprocessors

(I/O, timer) scheduling

Semaphores (Dijkstra, 1965)

Initialization
e Initialize a value atomically

P (or Down or Wait) definition
e Atomic operation

e Wait for semaphore to become positive and then decrement
P (s) {

while (s <= 0) Analogy: Think about semaphore

oo value as the number of empty
) chairs at a table...
V (or Up or Signal) definition
e Atomic operation
e Increment semaphore by 1
V(s){ The atomicity and the waiting
ST can be implemented by either
busywaiting or blocking

@ solutions.
% ® 6

e,

An aside on Dijkstra...

e
¢ Quite a personality...Avoided owning a computer for
several decades into his career...Won the 1972 Turing
Award...

¢ Created a series of numbered memos with his thoughts
on computing topics
e Now Archived at U. Texas:
e htip://www.cs.utexas.edu/~EWD/

e Example: “A Tutorial on the Split Binary Semaphore”
* http://www.cs.utexas.edu/~EWD/ewdO7xx/EWD703.PDF

e Some are short proofs or papers, others are jokes or rants.

e (Go-to statement considered harmful: Published in CACM
1968, also as EWD215...

\l

(IGET)

TR e

Semaphores can be used for...

Binary semaphores can provide mutual exclusion
(solution of critical section problem)

Counting semaphores can represent a resource with
multiple instances (e.g. solving producer/consumer
problem)

Signaling events (persistent events that stay
relevant even if nobody listening right now)

Classic Synchronization Problems

®
There are a number of “classic” problems that represent

a class of synchronization situations
Critical Section problem
Producer/Consumer problem
Reader/Writer problem

5 Dining Philosophers

Why? Once you know the “generic” solutions, you can
recognize other special cases in which to apply them
(e.qg., this is just a version of the reader/writer problem)

Producer / Consumer

Producer:

- Consumer:
while(whatever) while(whatever)
{ {

locally generate item

get item from full buffer

fill empty buffer with item

use item

}

Producer / Consumer (With Counting

Semaphores)
Producer: Consumer-
while(whatever) while(whatever)
: (
locally generate item
P(fullbuf);
P tybuf);
(cmptybul); get item from full buffer
fill empty buffer with item V(emptybuf);
V(tullbuf); use item
}

Semaphores: emptybuf initially N; fullbuf initially 0;

Producer Consumer (Bounded Buffer)
with Semaphores: More detalil...

producer () { consumer () {
while (1) { while (1) {
produce an item P (fullBuf) ;
P (emptyBuf) ;
P (mutex) ;
P (mutex) ; take an item from buffer
put the item in buffer V (mutex) ;
V (mutex) ;
V (emptyBuf) ;
V(fullBuf) ; consume the item

} }
} }

Init: emptyCount = N; fullCount = 0; mutex = 1
Are P (mutex)and V (mutex) necessary?

Example: Interrupt Handler

A device thread works with an interrupt handler
What to do with shared data?
What if “m” is held by another thread or by itself?

Device thread Interrupt handler

Acquire (m) ; Acve (m) ;

Release (m) ; Rele.ase (m) ;

Use Semaphore to Signal

Init(s,0);

Device thread
while (1) {

P(s);
Acqui;;7577\\\\\
deal with interrupt

Release (m) ;

Interrupt handler

\V(S);

Interrupted Thread

Interrupt

14

Semaphores Are Not Always Convenient

A shared queue has Enqueue and Dequeue:

Enqueue (q, item) Dequeue (q)

{ {
Acquire (mutex) ; Acquire (mutex) ;
put item into q; take an item from q;
Release (mutex) ; Release (mutex) ;

} return item;

}

It is a consumer and producer problem
e Dequeue (q) should block until g is not empty

Semaphores are difficult to use: orders are important

Today’'s Topics

¢ Semaphores

¢ Monitors

+ Mesa-style monitors
¢ Programming idiom
+ Barriers

DT

16

The Big Picture

OS codes and concurrent applications

High-Level
Atlgmic A\\/PI Mutex Semaphores Monitors Send/Recv
Low-Level I i
OW_ eve Load/store , nterrupt Test&Set cher atp mic
Atomic Ops disable/enable instructions
Interrupts CPU

Multiprocessors

(I/O, timer) scheduling

17

Monitor: Hide Mutual Exclusion

Brinch-Hansen (73), Hoare (74)
Procedures are mutual exclusive

Shared
data

Queue of waiting processes
trying to enter the monitor

procedures

Condition Variables in A Monitor

Wait(condition)
e Block on “condition”
Signal(condition)

e \Wakeup a blocked process

on “condition”

-

Queues
associated
with X, y

conditions

Entry queue

procedures

Monitor Abstraction

Encapsulates shared
data and operations
with mutual exclusive
use of the object (an
associated lock).

Associated Condition
Variables with
operations of Wait
and Signal.

_ entry queue

conditions

Condition Variables

We build the monitor abstraction out of a lock
(for the mutual exclusion) and a set of
associated condition variables.

Wait on condition: releases lock held by
caller, caller goes to sleep on condition’s
gqueue.

When awakened, it must reacquire lock.

Signal condition: wakes up one waiting
thread.

Broadcast. wakes up all threads waiting on
this condition.

Monitor Abstraction

EnQ:{acquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

_ entry queue

conditions

Monitor Abstraction

EnQ:{acquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

_ entry queue

conditions

Monitor Abstraction

EnQ:{acquire (lock);
if (head == null)
{head = item;
signal (lock, notEmpty);}
else tail->next = item;
tail = item;
release(lock);}
deQ:{acquire (lock);
if (head == null)
wait (lock, notEmpty);
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

_ entry queue

conditions

Monitor Abstraction

EnQ:{acquire (lock); ‘
if (head == null) o >
{head = item; > o
signal (lock, notEmpty);} =. . L%
else tail->next = item; > monitor_lock *é
tail = item; @ u
release(lock);} \ ‘ /
deQ:{acquire (lock); enQ| |deQ ®
if (head == null) Q

wait (lock, notEmpty); _—

item = head;

if (tail == head) tail = null;
head=item->next;
release(lock);}

conditions

Monitor Abstraction

EnQ:{acquire (lock); ‘
if (head == null) o >
{head = item; > o
signal (lock, notEmpty);} =. . L%
else tail->next = item; > monitor_lock *é
tail = item: \ @ u
release(lock);} \ ‘ /
deQ:{acquire (lock); enQ| |deQ ®
if (head == null) Q

wait (lock, notEmpty); _—

item = head;

if (tail == head) tail = null;
head=item->next;
release(lock);}

conditions

Monitor Abstraction

EnQ:{acquire (lock);
if (head == null)

> 2

{head = item; > o

signal (lock, notEmpty);} =. . L%

else tail->next = item; > monitor_lock o

. , - <

tail = item; @ u
release(lock);} \ /

deQ:{acquire (lock); Q| [deQ

while (head == null)

wait (lock, notEmpty); —
item = head;
if (tail == head) tail = null;
head=item->next;
release(lock);}

conditions

Producer-Consumer with Monitors

e
rn}E

(i)

procedure Producer
begin
while true do
begin
produce an item
ProdCons .Enter () ;
end;
end;

procedure Consumer
begin
while true do
begin
ProdCons.Remove () ;
consume an item;
end;
end;

monitor ProdCons

condition full, empty;

procedure Enter;
begin
if (buffer is full)
wait (full) ;
put item into buffer;
if (only one item)
signal (empty) ;
end;

procedure Remove;
begin
if (buffer 1s empty)
wait (empty) ;
remove an item;
if (buffer was full)
signal (full) ;
end;

Options of the Signaler

®
Run the signaled thread immediately and suspend the

current one (Hoare)
e If the signaler has other work to do, life is complex

e It is difficult to make sure there is nothing to do, because the
signal implementation is not aware of how it is used

e It is easy to prove things

Exit the monitor (Hansen)
e Signal must be the last statement of a monitor procedure

Continues its execution (Mesa)
e Easy to implement

e But, the condition may not be true when the awaken process
actually gets a chance to run

29

Today’'s Topics

¢ Semaphores

¢ Monitors

+ Mesa-style monitors
¢ Programming idiom
+ Barriers

av@
ok

30

Mesa Style “Monitor” (Birrell's Paper)

Associate a condition variable with a mutex
Wait(mutex, condition)

e Atomically unlock the mutex and enqueued on the condition
variable (block the thread)

e Re-lock the lock when it is awakened
Signal(condition)
e No-op if there is no thread blocked on the condition variable
e \Wake up at least one if there are threads blocked
Broadcast(condition)
e \Wake up all waiting threads
Original Mesa paper

e B. Lampson and D. Redell. Experience with processes and
monitors in Mesa. Comm. ACM 23, 2 (feb 1980), pp 106-117.

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter (Item item) { Remove (Item item) {
Acquire (lock) ; Acquire (lock) ;
i1f (count==N) if ('count)

Wait (lock, full); Wait(lock, empty);
insert item into buffer remove item from buffer
count++; count—--;
if (count==1) if (count==N-1)

Signal (empty) ; Signal (full) ;

Release (lock) ; Release (lock) ;

Any issues with this?

32

Consumer-Producer with Mesa-Style Monitor

static count = 0;
static Cond full, empty;
static Mutex lock;

Enter (Item item) {
Acquire (lock) ;
while (count==N)

Wait (lock, £full);
insert item into buffer
count++;
1f (count==1)

Signal (empty) ;
Release (lock) ;

Remove (Item item) {
Acquire (lock) ;
while (!'count)

Wait (lock, empty)
remove item from buffer
count—--;
1f (count==N-1)

Signal (full) ;

Release (lock) ;

33

Today’'s Topics

¢ Semaphores

¢ Monitors

¢ Mesa-style monitors
¢ Programming idiom
+ Barriers

34

The Programming ldiom

00
+ Waiting for a resource + Make a resource available
Acquire(mutex) ; Acquire(mutex) ;
while (no resource)
wait(mutex, cond); (make resource available)
(use the resource) Signal(cond);
/* or Broadcast(cond);
Release (mutex) ; Release (mutex) ;
%f *

m&mm

Revisit the Motivation Example

Enqueue (Queue g, Item GetItem (Queue qg) {
Item item) { Item item;
Acquire (lock) ; Acquire(lock);
while (q is empty)

insert an item to q; Wait(lock, Empty);
Signal (Empty) ; remove an item;
Release (lock) ;

} Release(lock);

return item;

Does this work?

Condition Variables Primitives

Wait(mutex, cond) Signal(cond)

e Enter the critical section e Enter the critical section
(min busy wait) (min busy wait)

e Release mutex e \Wake up a TCB in cond’s

e Save state to TCB, mark queue
as blocked e EXxit the critical section

e Put my TCB on cond’s
queue

e Exit the critical section
e Call the scheduler

e \Waking up:
« Acquire mutex

« Resume
‘-‘? 37

More on Mesa-Style Monitor

Signaler continues execution

Waiters simply put on ready queue, with no special
priority
e Must reevaluate the condition

No constraints on when the waiting thread/process must
run after a “signal”

Simple to introduce a broadcast: wake up all

No constrains on signaler

e Can execute after signal call (Hansen’s cannot)
e Do not need to relinquish control to awaken thread/process

Evolution of Monitors

Brinch-Hansen (73) and Hoare Monitor (74)

e Concept, but no implementation
e Requires Signal to be the last statement (Hansen)
e Requires relinquishing CPU to signaler (Hoare)

Mesa Language (77)

e Monitor in language, but signaler keeps mutex and CPU
e Waiter simply put on ready queue, with no special priority
Modula-2+ (84) and Modula-3 (88)

e Explicit LOCK primitive

e Mesa-style monitor

Pthreads (95)

e Started standard effort around 1989
e Defined by ANSI/IEEE POSIX 1003.1 Runtime library

Java threads
e Use ‘synchronized’ primitive for mutual exclusion
e Wait() and notify() use implicit per-class condition variable

Today’'s Topics

¢ Semaphores

¢ Monitors

¢ Mesa-style monitors
¢ Programming idiom
+ Barriers

40

Example: A Simple Barrier

Thread A and Thread B
want to meet at a Thread A Thread B

particular point and then
go on

How would you program
this with a monitor?

41

Using Semaphores as A Barrier

Use two semaphore?

init(sl, 0);
init(s2, 0);

Thread A Thread B
V(sl); = V(s2)
P(s2);: “7[*P(sl)

What about more than two threads?

42

Barrier Primitive

Functions

e [ake a barrier variable
e Broadcast to n-1 threads Thread 1 Thread n

e \When barrier variable has
reached n, go forward

Hardware support on

Barrier (b) ; S Barrier (b) ;

some parallel machines

N
TN

43

Equivalence

Semaphores

e Good for signaling

e Not good for mutex because it is easy to introduce a bug
Monitors

e Good for scheduling and mutex

e Maybe costly for a simple signaling

44

Summary

Semaphores

Monitors

Mesa-style monitor and its idiom
Barriers

45

5 Dining Philosophers

Philosopher 0 while(food available)
{pick up 2 adj. forks;

Philosopher 4 eat;
put down forks;
Q think awhile;

}

Q Q Philosopher 1
Philosopher 3 }Z/ Q&\

Philosopher 2

Template for Philosopher

while (food available)
{ [*pick up forks*/

eat;

[*put down forks™/

think awhile;

Naive Solution

while (food available)

{

P(fork[left(me)]);
P(fork[right(me)]);

[*pick up forks™/

eat;

V(fork[left(me)]);
V(fork[right(me)]);

[*put down forks™/

think awhile;

Does this work?

Simplest Example of Deadlock

Thread O Interleavin

g
P(R1)
P(R2) PRY)—
vm)\ PR2)
V(R2) P(R1)

waits

R1 and R2 initially 1 (pirQRQs)emaphore)
waits

Thread 1

P(R2)
P(R1)
V(R2)
V(R1)

Conditions for Deadlock

Mutually exclusive use of resources
e Binary semaphores R1 and R2

Circular waiting

e Thread 0 waits for Thread 1 to V(R2) and
Thread 1 waits for Thread 0 to V(R1)

Hold and wait
e Holding either R1 or R2 while waiting on other
No pre-emption

e Neither R1 nor R2 are removed from their respective holding
Threads.

Philosophy 101
(or why 5DP is interesting)

How to eat with your Fellows without causing
Deadlock.

e Circular arguments (the circular wait condition)
e Not giving up on firmly held things (no preemption)

e Infinite patience with Half-baked schemes (hold
some & wait for more)

Why Starvation exists and what we can do about it.

Dealing with Deadlock

It can be prevented by breaking one of the
prerequisite conditions:

Mutually exclusive use of resources

e Example: Allowing shared access to read-only
files (readers/writers problem)

circular waiting

e Example: Define an ordering on resources and
acquire them in order

hold and wait
no pre-emption

© 0
Circular \@Dndition
while (food available)

{| if (me ==0) {P(fork[left(me)]); P(fork[right(me)]);}
else {(P(fork[right(me)]); P(fork[left(me)]); }
eat;

V(fork[left(me)]); V(fork[right(me)]);

think awhile;

B

X

il 5

Hold and Wait Condit

while (food available)

d

%

s

PR

P(mutex);
while (forks [me] !=2)

{blocking|[me] = true; V(mutex); P(sleepy[me]); P(mutex);}
forks [leftneighbor(me)] --; forks [rightneighbor(me)]--;
V(mutex):

eat;

P(mutex); forks [leftneighbor(me)| ++; forks [rightneighbor(me)]++;

if (blocking|[leftneighbor(me)]) {blocking [leftneighbor(me)] = false; V
(sleepy|[leftneighbor(me))); }

if (blocking[rightneighbor(me)]) {blocking[rightneighbor(me)] = false;
(sleepy[rightneighbor(me)]); } V(mutex);

think awhile;

Starvation

The difference between deadlock and starvation is
subtle:

e Once a set of processes are deadlocked, there is
no future execution sequence that can get them
out of it.

e |n starvation, there does exist some execution
sequence that is favorable to the starving
process although there is no guarantee it will
ever occur.

e Rollback and Retry solutions are prone to
starvation.

e Continuous arrival of higher priority processes is
another common starvation situation.

S5DP - Monitor Style

Boolean eating [5];
Lock forkMutex;
Condition forksAvail;

void PickupForks (int i) {
forkMutex.Acquire();
while (eating[(i-1)%5] || eating

void PutdownForks (int i) {
forkMutex.Acquire();

[(i+1)%5]) eatingl[i] = false;
forksAvail.Wait(&forkMutex); forksAvail.Broadcast

eating[i] = true; (&forkMutex);

forkMutex.Release(); forkMutex.Release();

What about this?

while (food available)

{ | forkMutex.Acquire();

while (forks [me] != 2) {blocking[me]=true;
forkMutex.Release(); sleep(); forkMutex.Acquire();}

forks [leftneighbor(me)]--; forks [rightneighbor(me)]--;

forkMutex.Release():

eat;

forkMutex.Acquire();
forks[leftneighbor(me)] ++; forks [rightneighbor(me)]++;

if (blocking[leftneighbor(me)] || blocking[rightneighbor(me)])
wakeup (); forkMutex.Release();

41,2 A | 1.-21
ULIIIK AWILIC,

Classic Synchronization Problems

®
There are a number of “classic” problems that represent

a class of synchronization situations
Critical Section problem
Producer/Consumer problem
Reader/Writer problem

5 Dining Philosophers

Why? Once you know the “generic” solutions, you can
recognize other special cases in which to apply them
(e.qg., this is just a version of the reader/writer problem)

Readers/\Writers Problem
®
Synchronizing access to a file or data record in a database
such that any number of threads requesting read-only
access are allowed but only one thread requesting write
access is allowed, excluding all readers.

