
COS 318: Operating Systems

Non-Preemptive and
 Preemptive Threads

Prof. Margaret Martonosi
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall11/cos318

2

Today’s Topics

  Non-preemptive threads
  Preemptive threads
  Kernel vs. user threads
  Too much milk problem

3

Kernel scheduler

Revisit Monolithic OS Structure

  Kernel has its address space
shared with all processes

  Kernel consists of
  Boot loader
  BIOS
  Key drivers
  Threads
  Scheduler

  Scheduler
  Use a ready queue to hold all

ready threads
  Schedule in the same address

space (thread context switch)
  Schedule in a new address

space (process context switch)

User
Process

User
Process

4

Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

5

Scheduler

  A non-preemptive scheduler invoked by calling
  block()
  yield()

  The simplest form
 Scheduler:
 save current process/thread state

 choose next process/thread to run
 dispatch (load PCB/TCB and jump to it)

  Does this work?

PCBs & Queues

process state
process identifier
PC
Stack Pointer (SP)
general purpose reg
owner userid
open files
scheduling parameters
memory mgt stuff
queue ptrs
...other stuff...

process state
process identifier
PC
Stack Pointer (SP)
general purpose reg
owner userid
open files
scheduling parameters
memory mgt stuff
queue ptrs
...other stuff...

process state
process identifier
PC
Stack Pointer (SP)
general purpose reg
owner userid
open files
scheduling parameters
memory mgt stuff
queue ptrs
...other stuff...

head ptr
tail ptr

head ptr
tail ptr

Ready Queue Wait on Disk Read

7

More on Scheduler

 Should the scheduler use a special stack?

 Should the scheduler simply be a kernel thread?

8

Where and How to Save Thread Context?

  Save the context on the thread’s stack
  Need to deal with the overflow problem

  Check before saving
  Make sure that the stack has no overflow problem

  Copy it to the TCB residing in the kernel heap
  No overflow problems

frame
frame

frame
frame Thread 2

Thread 1
frame
frame

frame
frame Save the context

of Thread 1 to
its stack Context

9

Today’s Topics

  Non-preemptive threads
  Preemptive threads
  Kernel vs. user threads
  Too much milk problem

10

Preemption by I/O and Timer Interrupts

  Why
  Timer interrupt to help

CPU management
  Asynchronous I/O to

overlap with computation
  Interrupts

  Between instructions
  Within an instruction

except atomic ones
  Manipulate interrupts

  Disable (mask) interrupts
  Enable interrupts
  Non-Masking Interrupts

CPU

Memory Interrupt

11

State Transition for Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

12

State Transition for Preemptive Scheduling

Running

Blocked
Ready

Resource free, I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

13

Interrupt Handling for Preemptive Scheduling

  Timer interrupt handler:
  Save the current process / thread to its PCB / TCB
  … (What to do here?)
  Call scheduler

  Other interrupt handler:
  Save the current process / thread to its PCB / TCB
  Do the I/O job
  Call scheduler

  When to disable/enable interrupts?

14

Dealing with Preemptive Scheduling

  Problem
  Interrupts can happen

anywhere
  An obvious approach

  Worry about interrupts and
preemptions all the time

  What we want
  Worry less all the time
  Low-level behavior

encapsulated in “primitives”
  Synchronization primitives

worry about preemption
  OS and applications use

synchronization primitives

Concurrent applications

OS services

Synchronization
primitives

Scheduling
and interrupt handling

Preemption

  Scheduling policies may be preemptive or non-
preemptive.

•  Preemptive: scheduler may unilaterally force a task to relinquish
the processor before the task blocks, yields, or completes.

  timeslicing prevents jobs from monopolizing the CPU
•  Scheduler chooses a job and runs it for a quantum of CPU time.
•  A job executing longer than its quantum is forced to yield by

scheduler code running from the clock interrupt handler.
  use preemption to honor priorities

•  Preempt a job if a higher priority job enters the ready state.

Priority

  Some goals can be met by incorporating a notion of
priority into a “base” scheduling discipline.

•  Each job in the ready pool has an associated priority value; the
scheduler favors jobs with higher priority values.

  External priority values:
  imposed on the system from outside
  reflect external preferences for particular users or tasks

•  “All jobs are equal, but some jobs are more equal than others.”
  Example: Unix nice system call to lower priority of a task.
  Example: Urgent tasks in a real-time process control

system.
  Internal priorities

  scheduler dynamically calculates and uses for queuing
discipline. System adjusts priority values internally as as an
implementation technique within the scheduler.

Internal Priority

  Drop priority of tasks consuming more than their share
  Boost tasks that already hold resources that are in

demand
  Boost tasks that have starved in the recent past
  Adaptive to observed behavior: typically a continuous,

dynamic, readjustment in response to observed conditions
and events
  May be visible and controllable to other parts of the system
  Priority reassigned if I/O bound (large unused portion of quantum)

or if CPU bound (nothing left)

Keeping Your Priorities Straight
  Priorities must be handled carefully when there are

dependencies among tasks with different priorities.
  A task with priority P should never impede the progress

of a task with priority Q > P.
•  This is called priority inversion, and it is to be avoided.

  The basic solution is some form of priority inheritance.
•  When a task with priority Q waits on some resource, the holder

(with priority P) temporarily inherits priority Q if Q > P.
•  Inheritance may also be needed when tasks coordinate with

IPC.
  Inheritance is useful to meet deadlines and preserve

low-jitter execution, as well as to honor priorities.

19

Today’s Topics

  Non-preemptive threads
  Preemptive threads
  Kernel vs. user threads
  Too much milk problem

20

Kernel scheduler

User Threads vs. Kernel Threads

  Context switch at user-level
without a system call (Java
threads)

  Is it possible to do preemptive
scheduling?

  What about I/O events?

  A user thread
  Makes a system call (e.g. I/O)
  Gets interrupted

  Context switch in the kernel

User
Process

User
Process

User
Process

Scheduler

21

Summary of User vs. Kernel Threads

  User-level threads
  User-level thread package implements thread context

switches
  Timer interrupt (signal facility) can introduce preemption
  When a user-level thread is blocked on an I/O event, the

whole process is blocked
  Kernel-threads

  Kernel-level threads are scheduled by a kernel scheduler
  A context switch of kernel-threads is more expensive than

user threads due to crossing protection boundaries
  Hybrid

  It is possible to have a hybrid scheduler, but it is complex

22

Interactions between User and Kernel Threads

  Two approaches
  Each user thread has its own kernel stack
  All threads of a process share the same kernel stack

Private kernel stack Shared kernel stack

Memory usage More Less

System services Concurrent access Serial access

Multiprocessor Yes Not within a process

Complexity More Less

23

Today’s Topics

  Non-preemptive threads
  Preemptive threads
  Kernel vs. user threads
  Too much milk problem

24

“Too Much Milk” Problem

  Do not want to buy too much milk
  Any person can be distracted at any point

Student A Student B

15:00 Look at fridge: out of milk

15:05 Leave for Wawa

15:10 Arrive at Wawa Look at fridge: out of milk

15:15 Buy milk Leave for Wawa

15:20 Arrive home; put milk away Arrive at Wawa

15:25 Buy milk

Arrive home; put milk away
Oh No!

25

“Too Much Milk” : A different interleaving

Student A Student B

15:00 Look at fridge: out of milk

15:05 Leave for Wawa

15:10 Arrive at Wawa

15:15 Buy milk

15:20 Arrive home; put milk away

15:25 Look at fridge: plenty of milk

Yay!

26

“Too Much Milk”: A Third Interleaving

  Do not want to buy too much milk
  Any person can be distracted at any point

Student A Student B

15:00 Look at fridge: out of milk

15:05 Leave for Wawa

15:10 Look at fridge: out of milk Arrive at Wawa

15:15 Leave for Wawa Buy milk

15:20 Arrive at Wawa Arrive home; put milk away

15:25 Buy milk

Arrive home; put milk away
Oh No!

27

Using A Note?

 Any issue with this approach?

Thread B

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

Thread A

if (noMilk) {
 if (noNote) {
 leave note;
 buy milk;
 remove note;
 }
}

28

Another Possible Solution?

 Does this method work?

Thread A

leave noteA
if (noNoteB) {
 if (noMilk) {
 buy milk
 }
}
remove noteA

Thread B

leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

Didn’t buy milk
Didn’t buy milk

29

Yet Another Possible Solution?

 Would this fix the problem?

Thread A

leave noteA
while (noteB)
 do nothing;
if (noMilk)
 buy milk;
remove noteA

Thread B

leave noteB
if (noNoteA) {
 if (noMilk) {
 buy milk
 }
}
remove noteB

30

Remarks

  The last solution works, but
  Life is too complicated
  A’s code is different from B’s
  Busy waiting is a waste

  Peterson’s solution is also complex
  What makes these scenarios hard to reason about is

arbitrary interleaving.
  What we want is:

Acquire(lock);
if (noMilk)
 buy milk;
Release(lock);

Critical section

Interleaved Schedules

Uni-processor
implementation

logical concept /
multiprocessor
implementation

context
switch

The Trouble with Concurrency in
Threads...

Thread
0

Thread1

Data: x

while(i<10)
{x=x+1;
 i++;}

0

while(j<10)
 {x=x+1;
 j++;}

0 0 i j

What is the value of x when both threads
leave this while loop?

Range of Answers

Process 0
LD x // x currently 0

Add 1
ST x // x now 1, stored over 9

Do 9 more full loops // leaving x at 10

Process1

LD x // x currently 0
Add 1
ST x // x now 1
Do 8 more full loops // x = 9

LD x // x now 1

Add 1
ST x // x = 2 stored over 10

Nondeterminism

  What unit of work can be
performed without
interruption? Indivisible or
atomic operations.

  Interleavings - possible
execution sequences of
operations drawn from all
threads.

  Race condition - final
results depend on ordering
and may not be “correct”.

while (i<10) {x=x+1; i++;}

load value of x into reg
yield()
add 1 to reg
yield ()
store reg value at x
yield ()

Reasoning about Interleavings

  On a uniprocessor, the possible execution
sequences depend on when context switches can
occur
  Voluntary context switch - the process or thread

explicitly yields the CPU (blocking on a system call it
makes, invoking a Yield operation).

  Interrupts or exceptions occurring - an asynchronous
handler activated that disrupts the execution flow.

  Preemptive scheduling - a timer interrupt may cause
an involuntary context switch at any point in the code.

  On multiprocessors, the ordering of operations on
shared memory locations is the important factor.

36

What Is A Good Solution

  Only one process/thread inside a critical section
  No assumption about CPU speeds
  A process/thread inside a critical section should not be

blocked by any process outside the critical section
  No one waits forever

  Works for multiprocessors
  Same code for all processes/threads

37

Summary

  Non-preemptive threads issues
  Scheduler
  Where to save contexts

  Preemptive threads
  Interrupts can happen any where!

  Kernel vs. user threads
  Main difference is which scheduler to use

  Too much milk problem
  What we want is mutual exclusion

Pitfalls:
Mars Pathfinder Example
  In July 1997, Pathfinder’s computer reset itself several

times during data collection and transmission from
Mars.
  One of its processes failed to complete by a deadline,

triggering the reset.
  Priority Inversion Problem.

  Low priority process was inside a critical section to write a
shared data structure, but was preempted to let higher priority
processes run.

  The higher priority process was blocked waiting, and failed to
complete in time.

  Meanwhile a bunch of medium priority processes ran, until
finally the deadline ran out. They kept low priority process
inside critical section from running again to release.

  Priority inheritance had not been enabled on critical sections.
•  Low-pri “becomes” if holding an important resource!

