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Today’s Topics 

  Processes 
  Concurrency 
  Threads 

  Reminder: 
  Hope you’re all busy implementing your assignment 



(Traditional) OS Abstractions 

  Processes - thread of control with context 

  Files- In Unix, this is “everything else” 
  Regular file – named, linear stream of data bytes 
  Sockets - endpoints of communication, possible between 

unrelated processes 
  Pipes - unidirectional I/O stream, can be unnamed  
  Devices 



Process 

  Most fundamental concept in OS 

  Process: a program in execution 
  one or more threads (units of work) 
  associated system resources 

  Program vs. process 
  program: a passive entity 
  process: an active entity 

  For a program to execute, a process is created for that 
program 
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Program and Process 

main() 
{ 
... 
foo() 
... 
} 

bar() 
{ 
    ... 
} 

 Program 

main() 
{ 
... 
foo() 
... 
} 

bar() 
{ 
    ... 
} 

 Process 

heap 

stack 

registers 
PC 
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Process vs. Program 

  Process > program 
  Program is just part of process state 
  Example: many users can run the same program 

•  Each process has its own address space, i.e., even though 
program has single set of variable names, each process will 
have different values 

  Process < program 
  A program can invoke more than one process 
  Example: Fork off processes 
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Simplest Process 

  Sequential execution 
  No concurrency inside a process 
  Everything happens sequentially 
  Some coordination may be required 

  Process state 
  Registers 
  Main memory 
  I/O devices 

•  File system 
•  Communication ports 

  … 



Process Abstraction 

  Unit of scheduling 
  One (or more*) sequential threads of control  

  program counter, register values, call stack 
  Unit of resource allocation  

  address space (code and data), open files 
  sometimes called tasks or jobs 

  Operations on processes: fork (clone-style creation), 
wait (parent on child),  
exit (self-termination), signal, kill. 



Process Management 

  Fundamental task of any OS 

  For processes, OS must: 
  allocate resources 
  facilitate multiprogramming 
  allow sharing and exchange of info 
  protect resources from other processes 
  enable synchronization 

  How? 
  data structure for each process  
  describes state and resource ownership 



Process Scheduling: 
A Simple Two-State Model 

  What are the two simplest states of a process? 
  Running 
  Not running 

  When a new process created: “not running” 
  memory allocated, enters waiting queue 

  Eventually, a “running” process is interrupted 
  state is set to “not running” 

  Dispatcher chooses another from queue 
  state is set to “running” and it executes 



Two States: Not Enough 

  Running process makes I/O syscall 
  moved to “not running” state 
  can’t be selected until I/O is complete! 

  “not running” should be two states: 
  blocked: waiting for something, can’t be selected 
  ready: just itching for CPU time… 

  Five states total 
  running, blocked, ready 
  new: OS might not yet admit (e.g., performance) 
  exiting: halted or aborted 

•  perhaps other programs want to examine tables & DS 



The Five-State Model 



Process State Diagram 



OS Queuing Diagram 



Are Five States Enough? 

  Problem: Can’t have all processes in RAM 

  Solution: swap some to disk 
  i.e., move all or part of a process to disk 

  Requires new state: suspend 
  on disk, therefore not available to CPU 



Six-State Model 



Process Image 

  Must know: 
  where process is located 
  attributes for managing 

  Process image: physical manifestation of process 

  program(s) to be executed 

  data locations for vars and constants 

  stack for procedure calls and parameter passing 

  PCB: info used by OS to manage 



Process Image 

  At least small portion 
must stay in RAM 



19 

Process Control Block (PCB)  
  Process management info 

  State 
•  Ready: ready to run 
•  Running: currently running 
•  Blocked: waiting for resources 

  Registers, EFLAGS, and other CPU state 
  Stack, code and data segment 
  Parents, etc 

  Memory management info 
  Segments, page table, stats, etc 

  I/O and file management 
  Communication ports, directories, file descriptors, etc. 

  How OS takes care of processes 
  Resource allocation and process state transition 
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Primitives of Processes 

  Creation and termination 
  Exec, Fork, Wait, Kill 

  Signals 
  Action, Return, Handler 

  Operations 
  Block, Yield 

  Synchronization 
  We will talk about this later 
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Make A Process 

  Creation 
  Load code and data into memory 
  Create an empty call stack 
  Initialize state to same as after a process switch 
  Make the process ready to run 

  Clone 
  Stop current process and save state 
  Make copy of current code, data, stack and OS state 
  Make the process ready to run   



Process Creation 

  Assign a new process ID 
  new entry in process table 

  Allocate space for process image 
  space for PCB 
  space for address space and user stack 

  Initialize PCB 
  ID of process, parent 
  PC set to program entry point 
  typically, “ready” state 

  Linkages and other DS 
  place image in list/queue 
  accounting DS 

  Or clone from another process 
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Example: Unix 

  How to make processes: 
  fork clones a process 
  exec overlays the current process 

If ((pid = fork()) == 0) {   
      /* child process */ 

 exec(“foo”);  /* does not return */ 
else 

 /* parent */   
 wait(pid);    /* wait for child to die */ 



24 

Concurrency and Process 

  Concurrency 
  Hundreds of jobs going on in a system 
  CPU is shared, as are I/O devices 
  Each job would like to have its own computer 

  Process concurrency 
  Decompose complex problems into simple ones 
  Make each simple one a process 
  Deal with one at a time 
  Each process feels like having its own computer 

  Example: gcc (via “gcc –pipe –v”) launches 
  /usr/libexec/cpp | /usr/libexec/cc1 | /usr/libexec/as | /usr/libexec/elf/ld 

  Each instance is a process 
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Process Parallelism 

  Virtualization 
  Each process run for a while 
  Make a CPU into many 
  Each virtually has its own CPU 

  I/O parallelism 
  CPU job overlaps with I/O 
  Each runs almost as fast as if it 

has its own computer 
  Reduce total completion time 

  CPU parallelism 
  Multiple CPUs (such as SMP) 
  Processes running in parallel 
  Speedup 

emacs emacs 

gcc 

CPU CPU I/O 

CPU I/O 
3s 2s 3s 

3s 2s 

9s 

CPU 
3s 

CPU 
3s 

3s 
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More on Process Parallelism 

  Process parallelism is common in real life 
  Each sales person sell $1M annually 
  Hire 100 sales people to generate $100M revenue 

  Speedup 
  Ideal speedup is factor of N 
  Reality: bottlenecks + coordination overhead 

  Question 
  Can you speedup by working with a partner? 
  Can you speedup by working with 20 partners? 
  Can you get super-linear (more than a factor of N) speedup? 



Process-related System Calls 

  Simple and powerful primitives for process 
creation and initialization. 
  Unix fork creates a child process as (initially) a clone of the parent  

[Linux: fork() implemented by clone() system call] 
  parent program runs in child process – maybe just to set it up for 

exec 
  child can exit, parent can wait for child to do so. 

[Linux: wait4 system call] 

  Rich facilities for controlling processes by 
asynchronous signals. 
  notification of internal and/or external events to processes or groups 
  the look, feel, and power of interrupts and exceptions 
  default actions: stop process, kill process, dump core, no effect 
  user-level handlers 



Process Control 

int pid; 
int status = 0; 

if (pid = fork()) { 
 /* parent */ 
 ….. 
 pid = wait(&status); 

} else { 
 /* child */ 
 ….. 
 exit(status); 

} 

Parent uses wait to sleep 
until the child exits; wait 
returns child pid and 
status. 

Wait variants allow wait 
on a specific child, or 
notification of stops and 
other signals. 

Child process passes 
status back to parent on 
exit, to report success/
failure. 

The fork syscall returns a 
zero to the child and the 
child process ID to the 
parent. 

Fork creates an exact 
copy of the parent 
process. 



Child Discipline 

  After a fork, the parent program (not process) has 
complete control over the behavior of its child process. 

  The child inherits its execution environment from the 
parent...but the parent program can change it. 
  sets bindings of file descriptors with open, close, dup 
  pipe sets up data channels between processes 

  Parent program may cause the child to execute a 
different program, by calling exec* in the child context. 



Fork/Exit/Wait Example 

OS resources 

fork parent fork child 

wait exit 

Child process starts as clone 
of parent: increment 
refcounts on shared 
resources. 

Parent and child execute 
independently: memory 
states and resources may 
diverge. 

On exit, release 
memory and decrement 
refcounts on shared 
resources. 

Child enters zombie state: process 
is dead and most resources are 
released, but process descriptor 
remains until parent reaps exit 
status via wait. 

Parent sleeps in wait 
until child stops or 
exits.   

“join” 

Why are reference counts needed on shared resources? 



Exec, Execve, etc. 

  Children should have lives of their own. 
  Exec* “boots” the child with a different executable 

image. 
  parent program makes exec* syscall (in forked child context) 

to run a program in a new child process 
  exec* overlays child process with a new executable image 
  restarts in user mode at predetermined entry point (e.g., crt0) 
  no return to parent program (it’s gone) 
  arguments and environment variables passed in memory 
  file descriptors etc. are unchanged 



Fork/Exec/Exit/Wait Example 

fork parent fork child 

wait exit 

int pid = fork(); 
Create a new process that is a 
clone of its parent. 

exec*(“program” [, argvp, envp]); 
Overlay the calling process virtual 
memory with a new program, and 
transfer control to it. 

exit(status); 
Exit with status, destroying the 
process.  

int pid = wait*(&status); 
Wait for exit (or other status change) 
of a child.   

exec  

initialize 
child 
context 



Join Scenarios 

  Several cases must be considered for join  
(e.g., exit/wait). 
  What if the child exits before the parent does the wait? 

•  “Zombie” process object holds child status and stats. 
  What if the parent continues to run but never joins? 

•  Danger of filling up memory with zombie processes? 
•  Parent might have specified it was not going to wait or that it 

would ignore its child’s exit. Child status can be discarded. 
  What if the parent exits before the child? 

•  Orphans become children of init (process 1). 
  What if the parent can’t afford to get “stuck” on a join? 

•  Asynchronous notification (we’ll see an example later). 



Linux Processes 

  Processes and threads are not differentiated – with 
varying degrees of shared resources 

  clone() system call takes flags to determine what 
resources parent and child processes will share: 
  Open files 
  Signal handlers 
  Address space 
  Same parent 
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Process Context Switch  

  Save a context (everything that a process may damage) 
  All registers (general purpose and floating point) 
  All co-processor state 
  Save all memory to disk? 
  What about cache and TLB stuff? 

  Start a context 
  Does the reverse 

  Challenge 
  OS code must save state without changing any state 
  How to run without touching any registers? 

•  CISC machines have a special instruction to save and restore all 
registers on stack 

•  RISC: reserve registers for kernel or have way to carefully save 
one and then continue  
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Today’s Topics 

  Processes 
  Concurrency 
  Threads 



Before Threads… 

  Recall that a process consists of: 
  program(s) 
  data 
  stack 
  PCB 

     all stored in the process image 

  Process (context) switch is pure overhead 



Process Characterization 

  Process has two characteristics: 

  resource ownership 
•  address space to hold process image 
•  I/O devices, files, etc. 

  execution 
•  a single execution path (thread of control) 
•  execution state, PC & registers, stack 



Refining Terminology 

  Distinguish the two characteristics 
  process: resource ownership 
  thread: unit of execution (dispatching) 

•  AKA lightweight process (LWP) 

  Multi-threading: support multiple threads of execution 
within a single process 

  Process, as we have known it thus far, is a single-
threaded process 
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Threads 

  Thread 
  A sequential execution stream within a process (also called 

lightweight process) 
  Threads in a process share the same address space 

  Thread concurrency 
  Easier to program I/O overlapping with threads than signals 
  Responsive user interface 
  Run some program activities “in the background” 
  Multiple CPUs sharing the same memory 



Threads and Processes 

  Decouple the resource allocation aspect from the 
control aspect 

  Thread abstraction - defines a single sequential 
instruction stream (PC, stack, register values) 

  Process - the resource context serving as a “container” 
for one or more threads (shared address space) 
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Process vs. Threads 

  Address space 
  Processes do not usually share memory 
  Process context switch changes page table and other memory 

mechanisms 
  Threads in a process share the entire address space  

  Privileges 
  Processes have their own privileges (file accesses, e.g.) 
  Threads in a process share all privileges 

  Question 
  Do you really want to share the “entire” address space? 



An Example 

Address Space 

Thread Thread 

Editing thread: 
Responding to 
your typing in  
your doc 

Autosave thread:  
periodically 
writes your doc 
file to disk 

doc 

Doc formatting process 
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Thread Control Block (TCB) 

  State 
•  Ready: ready to run 
•  Running: currently running 
•  Blocked: waiting for resources 

  Registers 
  Status (EFLAGS) 
  Program counter (EIP) 
  Stack 
  Code 
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Typical Thread API 

 Creation 
  Create, Join, Exit 

 Mutual exclusion 
  Acquire (lock), Release (unlock) 

 Condition variables 
  Wait, Signal, Broadcast 
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Thread Context Switch  

  Save a context (everything that a thread may damage) 
  All registers (general purpose and floating point) 
  All co-processor state 
  Need to save stack? 
  What about cache and TLB stuff? 

  Start a context 
  Does the reverse 

  May trigger a process context switch 
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Procedure Call  

  Caller or callee save some context (same stack) 
  Caller saved example: 

save active caller registers 
call foo 

restore caller regs 

foo() { 
 do stuff 

} 
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Threads vs. Procedures 

  Threads may resume out of order 
  Cannot use LIFO stack to save state 
  Each thread has its own stack 

  Threads switch less often 
  Do not partition registers 
  Each thread “has” its own CPU 

  Threads can be asynchronous 
  Procedure call can use compiler to save state synchronously 
  Threads can run asynchronously 

  Multiple threads 
  Multiple threads can run on multiple CPUs in parallel   
  Procedure calls are sequential 



Multi-Threaded Environment 

  Process: 
  virtual address space (for image) 
  protected access to resources 

•  processors, other processes, I/O, files 

  Thread: one or more w/in a process 
  execution state 
  saved context when not running (i.e., independent PC) 
  stack 
  access to memory & resources of the process 



  Left: shared by all threads in a process 
  Right: private to each thread 

Multi-Threaded Environment 



  still a single PCB & addr space per process 
  separate stacks, TCB for each thread 

Single- vs. Multi-threaded Model 



Single- vs. Multi-threaded Model 



Remember… 

  Different threads in a process have same address 
space 

  Every thread can access every mem addr w/in addr 
space 
  No protection between threads 

  Each thread has its own stack 
  one frame per procedure called but not completed (local vars, 

return address) 



Why Threads? 

  In many apps, multiple activities @ once 
  e.g., word processor 

  Easier to create and destroy than processes 
  no resources attached to threads 

  Allow program to continue if part is blocked 
  permit I/O- and CPU-bound activities to overlap 
  speeds up application 

  Easy resource sharing (same addr space!) 

  Take advantage of multiprocessors 



Thread Functionality 

  Scheduling done on a per-thread basis 
  Terminate process --> kill all threads 
  Four basic thread operations: 

  spawn (automatically spawned for new process) 
  block 
  unblock 
  terminate 

  Synchronization: 
  all threads share same addr space & resources 
  must synchronize to avoid conflicts 
  process synchro techniques are same for threads (later) 



Two Types Of Threads 

User-Level Kernel-Level 



User-Level Threads 

  Thread management done by an application 

  Use thread library (e.g., POSIX Pthreads) 
  create/destroy, pass msgs, schedule execution, save/restore 

contexts 

  Each process needs its own thread table 

  Kernel is unaware of these threads 
  assigns single execution state to the process 
  unaware of any thread scheduling activity 



User-Level Threads 

  Advantages: 
  thread switch does not require kernel privileges 
  thread switch more efficient than kernel call 
  scheduling can be process (app) specific 

•  without disturbing OS 
  can run on any OS 
  scales easily 

  Disadvantages: 
  if one thread blocks, all are blocked (process switch) 

•  e.g., I/O, page faults 
  cannot take advantage of multiprocessor 

•  one process to one processor 
  programmers usually want threads for blocking apps 



Kernel-Level Threads 

  Thread management done by kernel 
  process as a whole (process table) 
  individual threads (thread table) 

  Kernel schedules on a per-thread basis 

  Addresses disadvantages of ULT: 
  schedule multi threads from one process on multiple CPUs 
  if one thread blocks, schedule another (no process switch) 

  Disadvantage of KLT: 
  thread switch causes mode switch to kernel 
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Real Operating Systems 

  One or many address spaces 
  One or many threads per address space 

1 address space Many address spaces 

1 thread per 
address space 

MSDOS 
Macintosh 

Traditional Unix 

Many threads per 
address spaces 

Embedded OS, 
Pilot 

VMS, Mach (OS-X), OS/2, 
Windows NT/XP/Vista, 
Solaris, HP-UX, Linux 
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Summary 

  Concurrency 
  CPU and I/O 
  Among applications 
  Within an application 

  Processes 
  Abstraction for application concurrency 

  Threads 
  Abstraction for concurrency within an application 



Unix Signals 

  Signals notify processes of internal or external 
events. 
  the Unix software equivalent of interrupts/

exceptions 
  only way to do something to a process “from the 

outside” 
  Unix systems define a small set of signal types 

  Examples of signal generation: 
  keyboard ctrl-c and ctrl-z signal the foreground 

process 
  synchronous fault notifications, syscall errors  
  asynchronous notifications from other processes 

via kill 
  IPC events (SIGPIPE, SIGCHLD) 

signal == “upcall” 



Process Handling of Signals 

1. Each signal type has a system-defined default 
action. 

•  abort and dump core (SIGSEGV, SIGBUS, etc.) 
•  ignore, stop, exit, continue  

2. A process may choose to block (inhibit) or ignore 
some signal types. 

3. The process may choose to catch some signal 
types by specifying a (user mode) handler 
procedure. 

•  specify alternate signal stack for handler to run on 
•  system passes interrupted context to handler 
•  handler may munge and/or return to interrupted context 



Predefined Signals (a Sampler) 

Name Default 
action Description 

SIGINT Quit Interrupt 

SIGILL Dump Illegal instruction 

SIGKILL Quit Kill (can not be caught, blocked, or 
ignored 

SIGSEGV Dump Out of range addr 

SIGALRM Quit Alarm clock 

SIGCHLD Ignore Child status change 

SIGTERM Quit Sw termination sent by kill 



User’s View of Signals 

int alarmflag=0; 
alarmHandler () 
{  printf(“An alarm clock signal was received\n”); 
    alarmflag = 1; 
 } 
main() 
{ 

 signal (SIGALRM, alarmHandler); 
 alarm(3); printf(“Alarm has been set\n”); 
 while (!alarmflag) pause (); 
 printf(“Back from alarm signal handler\n”); 

} 
Suspends caller 
until signal 

Instructs kernel 
to  
send SIGALRM 
in 
3 seconds 

Sets up signal handler 



User’s View of Signals II 

main() 
{ 

 int (*oldHandler) (); 
 printf (“I can be control-c’ed\n”); 
 sleep (3); 
 oldHandler = signal (SIGINT, SIG_IGN); 
 printf(“I’m protected from control-c\n”); 
 sleep(3); 
 signal (SIGINT, oldHandler); 
 printf(“Back to normal\n”); 
 sleep(3); printf(“bye\n”); 

} 



Yet Another User’s View 

main(argc, argv) 
int argc; char* argv[]; 
{ 

 int pid; 

 signal (SIGCHLD,childhandler); 
 pid = fork (); 
 if (pid == 0) /*child*/ 
 { execvp (argv[2], &argv[2]); } 
 else  
 {sleep (5); 
  printf(“child too slow\n”); 
  kill (pid, SIGINT); 
 } 

} 

childhandler() 
{  int childPid, childStatus; 
  childPid = wait (&childStatus); 

 printf(“child done in time\n”); 
  exit; 
 } 

SIGCHLD sent 
by child on termination; 
if SIG_IGN,  dezombie 

Collects status 

What does this do? 



The Basics of Processes 

  Processes are the OS-provided abstraction of multiple 
tasks (including user programs) executing concurrently. 

  Program = a passive set of bits 
  Process = 1 instance of that program as it executes 

  => has an execution context –  
register state, memory resources, etc.) 

  OS schedules processes to share CPU. 



69 

Process State Transition 

Running 

Blocked Ready 

Resource becomes 
available 

Create 

Terminate 


