Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

4.2 DIRECTED GRAPHS

vertex of
outdegree 3
and indegree 1

@ directed

» digraph API
directed path ® G 0
from 0to?2 T~ / cycle
@ ®

» digraph search

» topological sort
19
NN
&~

» strong components

Algorithms

FOURTH EDITIC

Robert Sedgewick and Kevin Wayne Copyright © 2002-2011 November 7, 2011 6:30:59 AM

Political blogosphere graph

Algorithms, 4™ Edition

Road network
Vertex = intersection; edge = one-way street. Vertex = political blog; edge = link.
% et 7
K
! : 5 %
H $ K2
— %
Vestry s © H 2% 3
t f A ——
-aight s =]
@) Laight st 7
§' Laight gy
£ ! t o =~
3
bert st S| t \
— Hubert sy f i X
£ 4 3
5
Vi i Ve ¢
S 5 El o = i &
Beach 5y I 2 &
] N
f Encsson sy —, /) v
A |~ o S
S N i N
- 3 N S 3
f = N Moore 5 Y
f N Moore &1 2N /Y S N/
s 2 H o
B Il A Q) N NQRW]
3 a5y — 2 el > Fann st f H 5/ ey %
£ ranklin sy m £ §6 N § gy s
H N7 53V R 49
amson s S = IR %) & ébb \“
a 3
= i T— 2= £ > t K 2 4
i 5 7~ s i 7 AN ~
2 v,
3 A ©2008 Google - Map data ©2008 Sanborn, NAVTEQ™ - Terms of Use The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
3

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Combinational circuit

Vertex = logical gate; edge = wire.

out

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then x0 is true

/

(%)

WordNet graph
Vertex = synset; edge = hypernym relationship.

event

happeningoccurrence occurrent natural_event

miracle

act human_action human_activity

change alteration modification miracle \

group_action
damage harm impairment transition increase forfeit forfeiture sacrifice action
resistance opposition transgression
leap jump saltation jumpleap
change
demotion variation
motion movement move
locomotion travel descent
runrunning jump parachuting

http://wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide Digraph applications

Afghanistan Stability / COIN Dynamics g oo ‘

— transportation street intersection one-way street
———OUTSIDE SUPPORT __
—TO INSURGENT S i
“FACTIONS e web web page hyperlink
N\~
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
SOVERALL| /“ / POPULATION = financial bank transaction
"GOVERNMENT/ 4 / onnilions]
cell phone person placed call
infectious disease person infection
| |
OALITION :
=4DOMESTIC -, JL‘_/TR'BA{ . : <R b game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
WORKING DRAFT - V3
control flow code block jump
Page 22

http:/ /www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide 9

Some digraph problems

Path. Is there adirected path froms o ¢?

Shortest path. What is the shortest directed path from s to ¢ ?

Topological sort. Can you draw the digraph so that all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v o w ?

PageRank. What is the importance of a web page?

Digraph APT

public class

Digraph

void
Iterable<Integer>
int

int

Digraph

String

Digraph (int V)
Digraph (In in)
addEdge (int v, int w)
adj (int v)

V()

E()

reverse ()

toString ()

In in = new In(args[0]);
Digraph G = new Digraph(in) ;

for (int v

for (int w :

=0; v < G.V(); v++)
G.adj (v))

create an empty digraph with V vertices

create a digraph from input stream

«—

StdOut.println(v + "->" + w);

add a directed edge v—w
vertices pointing from v
number of vertices
number of edges
reverse of this digraph

string representation

read digraph from
input stream

print out each
edge (once)

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists (use Bag abstraction).

adj[]

© N O U1 A W N RO

PR
N = O

Digraph API

v
13 E
2 «—E

R
PR R
OHOWOUNOHFHONWN

e

&N

[
N

B
NOOOUONWARROOOONRNOGOWN &

VR UANOUIWA

In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))

StdOut.println(v + "->" + w);

% java TestDigraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
4->3
4->2
5->4
6->9
6->4
6->0

11->4
11->12
12-9

read digraph from

—)
input stream

print out each

edge (once)

Adjacency-lists digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.

public class Digraph

{

private final int V;
private final Bag<Integer>[] adj;

public Digraph(int V)

<«—+— adjacency lists

{ | create empty graph
this.V = V; with V vertices
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();
}
public void addEdge(int v, int w) l 2dd edge from v to w
{ adj[v].add(w); }
public Iterable<Integer> adj(int v) | iterator for vertices

{ return adj[v]; }

pointing from v

Digraph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices pointing from v.
* Real-world digraphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

RS e insert edge edge from |teraFe F)ver vertices > dlgraph search
from v to w v to w? pointing from v?

list of edges

E
adjacency matrix V2 11 1 \Y
adjacency lists E+V 1 outdegree(v) outdegree(v)
t disallows parallel edges
17 18
Reachability

Depth-first search in digraphs

Problem. Find all vertices reachable from s along a directed path. Same method as for undirected graphs.

* Every undirected graph is a digraph (with edges in both directions).
S

» DFS is a digraph algorithm.
| DFS (to visit a vertex v)
I Mark v as visited.

Recursively visit all unmarked

vertices w pointing from v.

C—»

20

Depth-first search demo

21

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute pigraph for Graph]

public class DirectedDFS
{
private boolean[] marked; <«———+— true if path from s
public DirectedDFS (Digraph G, int s)
{ _ . constructor marks
marked = new boolean[G.V()]; vertices reachable from s
dfs (G, s);
}
private void dfs(Digraph G, int v) <«——— recursive DFS does the work
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
}
public boolean visited(int v) client can ask whether any
— .
{ return marked[v]; } vertex is reachable from s
}

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch

{
private boolean[] marked;
public DepthFirstSearch(Graph G, int s)
{
marked = new boolean[G.V()];
dfs (G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
}
public boolean visited(int v)
{ return marked[v]; }
}

Reachability application: program control-flow analysis

Every program is a digraph.

* Vertex = basic block of instructions (straight-line program).

* Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

nead

%0: 613

tessEuon

271

B TIoN
HRBE B0

»: vew
e
P
aeoson
‘ v
| 2o
Dre \
eslsio
‘ nedsnon l
AN A"
nedspon |
[
| wespom j
e \ =

true if path to s

constructor marks
vertices connected to s

neBuno

16: 5= 218

neBumo

HRBUEI0

18 B t5

HeBEEEI0

mzm‘"”\\‘ neBuon

38 U<t

recursive DFS does the work

client can ask whether any
vertex is connected to s

—
on
v
2 B
—=3
won
v
4t
==
EI
6:ti<= 10
HEEn
Bt
nun
10: 2= 11
neBE

12: 110<=

teBuo

22

24

Reachability application: mark-sweep garbage collector Reachability application: mark-sweep garbage collector

Every data structure is a digraph. Mark-sweep algorithm. [McCarthy, 1960]

* Mark: mark all reachable objects.
* Sweep: if object is unmarked, it is garbage (so add to free list).

* Vertex = object.
 Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack). Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).
9 9 p J\’:’/. J\’;'/,
BN} T
J/J/ = J/’J/ =
J‘J J\‘J
J/ 2 - J/ 3 0
o2)

Depth-first search in digraphs summary Breadth-first search in digraphs
DFS enables direct solution of simple digraph problems.
* Reachability.

* Path finding.

* Topological sort.

Same method as for undirected graphs.

* Every undirected graph is a digraph (with edges in both directions).
* BFS is a digraph algorithm.

* Directed cycle detection.
* Transitive closure.

BFS (from source vertex s)

. . . . Put s onto a FIFO queue, and mark s as visited.
Basis for solving difficult digraph problems.

* Directed Euler path.

Repeat until the queue is empty:

- remove the least recently added vertex v

+ Strongly-connected components. - for each unmarked vertex pointing from v:

add to queue and mark as visited..

Proposition. BFS computes shortest paths (fewest number of edges).

28

Multiple-source shortest paths Breadth-first search in digraphs application: web crawler

Multiple-source shortest paths. Given a digraph and a set of source vertices, Goal. Crawl web, starting from some root web page, say www.princeton.edu.
find shortest path from any vertex in the set to a tfarget vertex v. Solution. BFS with implicit graph.

Ex. Shortest path from {1,7,10} to 5 is 7=6—4—3—5, BFSs.
* Choose root web page as source s.
* Maintain a gueue of websites to explore.
(6) @ (8) * Maintain a ser of discovered websites.
» Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. How fo implement multi-source constructor? Q. Why not use DFS?
A. Use BFS, but initialize by enqueuing all source vertices.

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>(); <«——F—— queue of websites to crawl
SET<String> visited = new SET<String>(); <«—+—— set of visited websites

String s = "http://www.princeton.edu";
queue.enqueue (s) ; <«——+—— start crawling from website s
visited.add(s) ;

while (!queue.isEmpty())
{
String v = queue.dequeue(); <«—+L read in raw html from next
StdOut.println(v) ; website in queue
In in = new In(v);
String input = in.readAll();

Stzing regexp = ThELpi//(N\WHW.)* () 7 se regular expression to find all URLs H
Pattern pattern = Pattern.compile (regexp); «— - — . gular expressi ! 4 t0p0|oglca| sort
. in website of form http://xxx.yyy.zzz
Matcher matcher = pattern.matcher (input) ;
while (matcher.find())
{
String w = matcher.group() ;

if ('visited.contains(w))

{

if unvisited, mark as visited

visited.add(w) ; «—r
and put on queue

queue.enqueue (W) ;

31 32

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,

in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.

. Algorithms

. Complexity Theory
. Artificial Intelligence
. Intro to CS

. Cryptography

. Scientific Computing

O U1 A W N — O

. Advanced Programming

Svabe
®

tasks

Topological sort demo

precedence constraint graph

CFO-OO-G

feasible schedule

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.

0—-5 02

0—1 3-6

35 34 @4_@ SD
5—4 64 /

60 3-2 e °
14

CFO-O O~

directed edges

Solution. DFS. What else?

33

Depth-first search order

public class DepthFirstOrder

{

private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if (!'marked[v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
reversePost.push(v) ;

}

public Iterable<Integer> reversePost ()
{ return reversePost; }

—

35

topological order

returns all vertices in
“reverse DFS postorder”

34

36

Reverse DFS postorder in a DAG

marked[] reversePost
dfs (0) 1000000
dfs (1) 1100000 @
dfs (4) 1100100
®<_/G> p 4 done 4 d)
1 done 41
A})_,@ dfs (2) 1110100 @
2 done 412
dfs (5) 1110110 o
5 done 4125 o
0—5 0 done 41250
0—2
Lot dfs (3) 1111110
3—6
3—5
= dfs (6) 1111111 O
5—4 6 done 412506 e
6—4 3 done 4125063
6—0 reverse DFS
352 postorder is a
14 done 1111111 4125063 topological order!

37

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

* If directed cycle, topological order impossible.

* If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Ou0,

©,
O—n

SNEYS
()

&

Solution. DFS. What else? See textbook.

39

Topological sort ina DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge v—w. When dfs (e, v) is called:

dfs (0)
dfs (1)
dfs (4)
4 done

* Case l: afs(G, w) has already been called and returned.

Thus, w was done before v. 1 done
dfs (2)

2 done
dfs (5)
» Case 2: dfs(G, w) has not yet been called.

5 done

It will get called directly or indirectly 0 done

by dfs (e, v) and will finish before dafs (e, v).
ExX: ————> dfs(3)

case 1 <:>

Thus, w will be done before v.

» Case 3: dfs(G, w) has already been called, case 2 <} :f:;,‘;;
but has not returned. 3 done
Can't happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle. done

all vertices adjacent from 3 are done before 3 is done,
so they appear after 3 in topological order

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PRGE 3

DEPARTMENT COURSE DESCRIPTON PREREQS

COMPUTER CPSC Y32 | INTERMEDIATE COMPIER [CPSC Y32

SCIENCE DESIGN, WITH A FOCUS ON
DEPENDENCY RESOLUTION.

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

38

40

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

public class A extends B % javac A.java
{ A.java:1l: cyclic inheritance
coo involving A
} public class A extends B { }
1 error

public class B extends C

{

public class C extends A
{

Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.

% ln -s a.txt b.txt
% ln -s b.txt c.txt
% ln -s c.txt a.txt

% more a.txt
a.txt: Too many levels of symbolic links

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

® 00 Workbook1
< A B C D
" " " " " "
1 "=Bl1+1 =Cl+1 =Al+1
7 Microsoft Excel cannot calculate a formula.
8 u Cell references in the formula refer to the formula's
e result, creating a circular reference. Try one of the
9 following:
10 « If you accidentally created the circular reference, click
OK. This will display the Circular Reference toolbar and
1 1 help for using it to correct your formula.
* To continue leaving the formula as it is, click Cancel.
12 (Ganee)

b | fd | ok | ot | et
‘m\lmmb

<< -+ TL Sheetl Sheet2 | Sheet3 J

41 42
Directed cycle detection application: WordNet
The WordNet database (occasionally) has directed cycles.
WordNet Search - 3.0 - Wordlet home page - Glossary - Help
Word to search for: |danpen
Display Options: | (Select option to change) v
Key: "S" = Show Synset (semantic) relations, "W = Show Word (lexical) relations
Verb
® 5 (v) stifle, dampen (smother or suppress) “Stifle your curiosity"
© direct troponym { full tropenym
© direct hypernym | inherited hypernym | sister torm
o S (v) suppress, stamp down, inhibit, subdue, conquer, curb (to put down by force or authority) “suppress a nascent uprising"; “stamp down on littering"; "conguer one's desires"
© direct troponym ! full troponym
o direct hypernym | inkerited hypernym | sister term
S (v) control, hold in, hold, contain, check, curb, moderate (lessen the intensity of; temper, hold in restraint, hold or keep within limits) “moderate your alcohol intake";
"hold your tongue"; “hold your temper"; "control your anger"
© direct troponym { full troponym
o direct hypernym | inkerited hypernym ! sister term
® 5: (v) restrain, keep, keep back, hold back (keep under control, keep in check) “suppress a smile"; "Keep your temper"'; “keep your caol”
© direct troponym { full tropenym
© direct hypernym | inherited hypernym | sister term
© S (v) inhibit, bottle up, suppress (control and refrain from showing; of emotions, desires, impulses, or behavior)
© direct troponym ! full troponym
© direct hypernym | inherited hypernym | sister term
o S: (v) restrain, keep, keep back, hold back (keep under control, keep in check) “suppress a smile"; “Keep your temper"; “keep
your cool"
© direct troponym | full troponym
o direct inherited hypernym | sister term
® S: (v) inhibit, bottle up, suppress (control and refrain from showing; of emotions, desires, impulses, or behavior)
© derivationally related form
o sentence frame
o derivationally related form
44

43

» strong components

45

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

3 connected components

connected component id (easy to compute with DFS)

0 1 2 3 4 5 6 7 8 91011 12
cc[] O O O OO 0 1 1 1 2 2 2 2

public int connected(int v, int w)
{ return cc[v] == cc[w]; }

|
constant-time client connectivity query

v and w are strongly connected if there is a directed
path from v to w and a directed path from w to v

@%\g

X

@/’

5 strongly-connected components

ole

strongly-connected component id (how to compute?)

0 1 2 3 4 5 6 7 8 91011 12
sce[] 1 0 1 1 1 1 3 4 4 2 2 2 2

public int stronglyConnected(int v, int w)
{ return scc[v] == scc[w]; }

|
constant-time client strong-connectivity query

47

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path
from v o w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:
* vis strongly connected to v.

» If vis strongly connected to w, then w is strongly connected to v.
» If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

46

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

great egret
~

‘)m P v:l;

blue-gill fish

B

y A
~ "‘m
mosquito f{"“ earthworm
s|ug

algae (magnified)

cattails

http://www.twingroves.district96.k12.il.us/ lands/

der/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

48

Strong component application: software modules

Software module dependency graph.
* Vertex = software module.
* Edge: from module to dependency.

// l ~ libioon”
//wmmsgmz G -

lerproet)
o

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Kosaraju's algorithm: intuition

Reverse graph. Strong components in G are same as in G~.

Kernel DAG. Contract each strong component into a single vertex.

Idea.

how to compute?

* Compute topological order (reverse postorder) in kernel DAG.

* Run DFS, considering vertices in reverse topological order.

@
3

ede

® @

digraph G and its strong components

kernel DAG of G

49

Strong components algorithms: brief history

1960s: Core OR problem.
» Widely studied; some practical algorithms.
» Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

* Classic algorithm.

* Level of difficulty: Algs4++.

» Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).
» Forgot notes for lecture; developed algorithm in order to teach it!
* Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
* Gabow: fixed old OR algorithm.
* Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G® to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph (ReversePost)

GR
@(‘i
é‘é 102453119121067 38

check unmarked vertices in the order
01234567809101112 dfs (0) HRURLER RIS
dfs(6)

dfs(7)
dfs(8)
check 7
8 done
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11

50

52

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G* to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph

(0)
. 900-9

LR

check unmarked vertices in the order
102453119121067 8

Q) CEGHI=G)0) (=()=)=) o) (8)7)

dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 dfs(8)
dfs(3) dfs(9) check 0 check 7
check 5 check 11 6 done check 9
dfs(2) dfs(10) 8 done
check 0 check 12 7 done
check 3 10 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (I!)

