4.1 UNDIRECTED GRAPHS

» graph API

» depth-first search

» breadth-first search

» connected components
» challenges

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - October 27,2011 3:02:23 AM

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
e Interesting and broadly useful abstraction.

* Challenging branch of computer science and discrete math.
* Hundreds of graph algorithms known.
* Thousands of practical applications.

Protein-protein interaction network

" o.o
00 %7
LY = .

o)
% chted
‘e ®

L]

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet

7205.230.118

207.205.230.105
207.205.244H b85 230.110 207.205.23!
207.20§.230.128

0678.151.110

2075 2h9.1 207.205.230.117
07.205.280.168 207.205.28
| | 267.208230102

207.205.230.174
207.205|

02.205.230.18%
87.205249.117

247\205.25Q\ 26

07.205.230/158 207.205.24
£07.205.2301%9

07.205.230.112

207.205.280.155
7.205.249.10 01.205.230.198 207.2

Map of science clickstreams

Social work

.

.. .
° @

Production
research

L]
Economics

O. »
@ £
< e :o
@,]
311 LT & 3o
. @ 028 (]
Child Education 2 ¢
Psychology ® .3'
. L ®

1

¢ /Anthropology o
®" Psychology
.
o
°
®

® (¢
..Cognmvc
Science

Tourism

Minerology
0.‘ Acoustics

Manufacturing
.

®
Stanshcai.'
physics ¢
°
Physical’ «®
chemistry, &

chemistry

Analytical

Chemistry
° L8

Social\and personality
psychology Biochemistry

o
o/ Atimal

0 % gchavion

9 o0

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

Material science
Engineering

Applied
o Physics
.

o X
o _-®Pharmaceutical
o - research
°
.

Chemical
Engineering
L]

Kevin's facebook friends (Princeton network)

Hart Montgomery

"600
%
s,
/% > "’l,b
6,
Jq,,ﬁ(Sy, /
Hicy, ©), 4 A
ddl_a/./:e/D,',"b "// /// g - "’6« e
Ning,) LT © a
Aanyy i //// ‘ / z
” » =4l
o "’S’iOzo:r ’ ‘MA;/;‘// f!’/”,// .
iego Nehap ! \‘ h“ SA i / l," / ’l ,//e’//”’) Vanderbei
Michael Burns g AR 3 5 / "’,' 2 1 Mﬂl"l,' R:b‘-? Me.|0
WSz g e

@ Debbie Peikes

Norman vy

/#® Sophie Qingzhen Wang

19)19Z 119

10 million Facebook friends

facebook

"Visualizing Friendships" by Paul Butler

One week of Enron emails

KEY: mmm
EMPLOYEE (E-MAIL ADDRESS)-++:svusessssssuasensy CI w NI
AT LEAST ONE E-MAIL CONTACT-++++++++; """““:;‘&,,
BETWEEN EMPLOYEES o ° tana jones
cquun‘ . o’ :wwund scot
dan. hM susan bailey
danny. mccarty don.baughman \ stephanio panus
danetschookrat . &} 3 Gana scholtes o] o
dasron.gron i 1. beawner 40 : dickson
i ety] O {.koavey. @ e ® L * fmg«mmy @ stacy.
. ® ' fletcher.sturm g ® :ﬂn:::id @ shelley.corman
rank. ermi mekary
debra.peringiere o M-M.‘. ® L witiams @ sara shackleton
d.marn o harry.arora @ L @ Andrew lowis @ sally beck
h.lewis .
drew.fossum o vy e o The analysis detected @ andrearing @ ryan singer
d.momas g el an anomaly: a new e- @ a.martn dp rodheyien
D) b mail address for this @ steven kean
dutch.quigley g emeye @ john lavorato g person, who had been S tone @ rickbuy
o haodicke g jettxing @ “phillip.allen” for 131 & ichasd shapho @ richard sanders
jim.schwieger @ previous weeks.
elizabeth sager g e & ® louise kitchen @ richard.ring
| dasovich
{..campbell o john "L) @ jet @ phiiplove
; (=} o @ barry tycholiz
gerald nemec @ john.zutter @ ® viadi ® m.scott
oo P jonathan mduay.. @ worikuykendal @ m_peesio
holden. saksbury @ joan 3 ° ® 1om donohoe ©® monika causholi
judy townsend .
james. derrick @ N ® mike.grigsby .. themas martin ® m jove
jason.wiliams @ Kkevin.ruscity @ qn Sustn persie ® mike. meconnell
jason wolle @ W'W'TY.. @ s shively @ michelle lokay
jefirey hodge @ p gt QL iy @ michetie.cash
jeftrey. shankman @ martin cuita ® ® ¥ @ robert benson ® m._fomey
jeft.skilling ® e eimin? o O o bertintes ® it
/ |.tarmer @ "‘“ﬁ:’" ’ T T b 4 A’ philip.aflen ® mark whitt
Lhacis @ mike, swerzbin pulz: mims ® mark taylor
. monique sanchez M. tholt haedicke
Company leaders e-mail " ® ¥ " ° ":m':""
less frequently, leaving | ', o e @ © avio hoard Sources: Dr.
some communication to ohngriren ® o o @ honbiar Canoy E. Pricbe
subordinates. John, hodo; o ° liz. m - wm"g:«
Hopkins
nm.um ? T T T T ? lnoy dov\oho University
kay.mann - ltind'bedy vmson
Finding Patterns kenneth.lay """

In Corporate Chatter

The evolution of FCC lobbying coalitions

Frad Willamson & Associates v psg

® crr
.
Home Telephone
PET
Rural Uhilities Service
\.USDA
Lincolnville Networks
®._ Oxford Telephone
AtContact Communications
®. Virtual Geosatellite
.
Hot Springs Telephone
&RonanTelephone
pulver.com
¢ Google
L]
EPG
@ ARIC
.
CoBank
L
ACB
. MSV. WildBlue
. .
Texas OPC
"'(S:FA Public Service Telephone
‘o/f:) Townes Telecommunications
L]
Venture Communications Cooperati
Citizens Telephone DCI Voice Solutions @ .Souﬂerpe
\.KngdomTelephone
Core Communications Jrate of Haved
Lauttamus .ScareofAlaska
.
KMC Telecom
.Admncle\.dezagmg .5595’9 Communications Advisory Counsel
. AT&T Wireless @ g >/ L1 Com ’ {Dsw?omeop;eswephm
® SeimPCS . e / Alliance of Rural CMRS Carriers A Cascade Ut
. - Qne * NTCa JIFCA Molaa A= BeaverCr::Teleplme
IekstarComrunmons b - NE Colorado Cellular Balhoﬂ&Rowe L] AL
Aventure PCS ERTA iyl ot)
/i ,7.‘ AI" ccan Teleot Bagley Mmﬁnapcs Frontier Windstream o 'Ib_ = T c ;J—. : jﬁns—CaswdsTelephone
. f S it oL
FBNIndiana .GodeonferenoePam\evs E brooke Cellular s OPAST(;‘?RTA Mcwuedephone A» ¥ ‘QEQO'*-ldahoUnins
X .lf-eeCode.enang lowa Network Services .o&dmw'euss \ " T > 77 Fubokd Telephone
Baraga Telephone C‘“"' ”i*“* ephone *
. e Dakota Network Jlue Casa Communications mm/' icati Great Lakes Communications © . Ploriear Telephone T
*\ Jelscape Commurications SureWest @~ OmniTel * . Seyin Telephone

Onvoy \.

“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.

Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor

joint

stock, currency

street intersection, airport
class C network
board position
person, actor

neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast

synapse

protein-protein interaction

bond

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex

cycle of edge

length 5 \ l

path of
« length 4

N connected
Components

vertex of

degree 3 ™\

Some graph-processing problems

Path. Is there a path between s and ¢ ?
Shortest path. What is the shortest path between s and ¢ ?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

» graph API

Graph representation

Graph drawing. Provides intuition about the structure of the graph.
Caveat. Intuition can be misleading.

two drawings of the same graph

Graph representation

Vertex representation.
e This lecture: use integers between 0 and V1.

» Applications: convert between names and integers with symbol table.

self loop parallel

& edges
Anomalies. .@‘llo

Graph APT

public class Graph

Graph (int V)
Graph (In in)
void addEdge (int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()

String toString()

In in = new In(args[0]);
Graph G = new Graph(in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.println(v + "-" + w);

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices
number of edges

string representation

read graph from

A

input stream

print out each

A

edge (twice)

Graph API: sample client

Graph input format.

tinyG. txt

L e
; © (@
1212 ’0 @‘@

VIO NO ORPRPOUTO OO BN

In in = new In(args[0]);
Graph G = new Graph(in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.println(v + "-" + w);

ava Test tinyG. txt

A

A

read graph from
input stream

print out each
edge (twice)

Typical graph-processing code

compute the degree of v

public static int degree(Graph G, int v)
{
int degree = 0;
for (int w : G.adj(v)) degree++;
return degree;

compute maximum degree

compute average degree

}
public static int maxDegree(Graph G)
{

int max = 0;

for (int v = 0; v < G.VQO; v++)

if (degree(G, v) > max)
max = degree(G, v);

return max;
}
public static int avgDegree(Graph G)
{

return 2 * G.EQ / G.VQ;
}

count self-loops

public static int numberOfSelfLoops(Graph G)
{

int count = 0;
for (int v = 0; v < G.VQO; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2;

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

[

R YW VW VO Jd & & Ww wo o o o

O 0 o U1 1 O N K

i o
NN R

20

Adjacency-matrix graph representation

Maintain a fwo-dimensional V-by-V boolean array:

for each edge v—w in graph: adj[v][w] = adj[w][v] = true.

two entries

for each edge

12

11

10

10

11

12

21

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

QL

o
—
—

A\ N

O© 00 N O Ui o W N = O

BB
N R O

i KR 0 g 8 g B
\III Bag objects
=[]
~5
i Bl Kl El
~B o]
~o—{4]
~

> r;:pgesentatioc?s

1

\ of the same edge
~m-o-m
nEl
~[o—+12

~[a{9]

22

Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V;
private Bag<Integer>[] adj;

public Graph (int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;

public void addEdge (int v, int w)
{

adj[v] .add (w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

A

adjacency lists
(using Bag data type)

create empty graph
with v vertices

add edge v-w

(parallel edges allowed)

iterator for vertices adjacent to v

23

Graph representations

In practice. Use adjacency-lists representation.

 Algorithms based on iterating over vertices adjacent to v.
 Real-world graphs tend to be "sparse.”

\ huge number of vertices,
small average vertex degree

sparse (E=200) dense (E =1000)

Two graphs (V = 50)

24

Graph representations

In practice. Use adjacency-lists representation.

 Algorithms based on iterating over vertices adjacent to v.
 Real-world graphs tend to be "sparse.”

\ huge number of vertices,
small average vertex degree

representation add edge edge between iteratg over vertices
v and w? adjacent to v?
list of edges E 1 E E
adjacency matrix V2 1~ 1 \Y,
adjacency lists E+V] degree(v) degree(v)

* disallows parallel edges

25

» depth-first search

26

Maze exploration

Maze graphs.

e Vertex = intersection.

» Edge = passage.

‘D:U:D
= —

I I

5

F =

]

==
/

/

intersection

Goal. Explore every intersection in the maze.

passage

27

Trémaux maze exploration

Algorithm.

 Unroll a ball of string behind you.

e Mark each visited intersection and each visited passage.
» Retrace steps when no unvisited options.

=) =) =2
= A =&~

28

Trémaux maze exploration

Algorithm.

 Unroll a ball of string behind you.

e Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

29

Maze exploration

30

L

I__I|

I
|

fill

Tcl_

-
H[REN
T
;I

|/I_|||I|J

Ill_

Emil
r

;

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications. [ahead]
* Find all vertices connected to a given source vertex.
e Find a path between two vertices.

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

public class Search

Search (Graph G, int s) find vertices connected to s

boolean marked(int v) is vertex v connected to s?

Typical client program.

e Create a Graph.

 Pass the craph to a graph-processing routine, e.g., search.
* Query the graph-processing routine for information.

Search search = new Search (G, s);
for (int v = 0; v < G.V(); v++)
if (search.marked(v))
StdOut.println(v) ; <

print all vertices
connected to s

33

Depth-first search (warmup)

marked[] adj[]

Goal. Find all vertices connected to s. @ ?% 1| 3ol
. . . 3 31542
Idea. Mimic maze exploration. J@¢®<@L s5l30
dfs(2) (0) (2) o|T 0215
. check 0
Algorithm. g
« Use recursion (ball of string). O =0 e
e Mark each visited vertex. ! ehek 0 ?\EZ’? 01T 933°
check 2 2T 2 134
one 3 31542
e Return (retrace steps) when no te J@/ \@L AR
unvisited options. 4Fs(3) e
17T 1
M I
5
Data structure. S
o o . dfs(5)
* boolean[] marked fo mark visited vertices. check 3 A
! gzﬁgk 0 E@Dz 30T 3. 542
sit 5130
| ehenk 3 0|1 9|15
3 e @:< LRI
et O A
check 4
2 done
check 1
check 5

0 done

Depth-first search (warmup)

public class DepthFirstSearch
{

private boolean[] marked;

A

public DepthFirstSearch (Graph G, int s)

{

marked = new boolean[G.V ()]
dfs (G, s);

private void dfs (Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked|[w])
dfs (G, w);

public boolean marked (int v)
{ return marked[v]; }

AN

A

A

marked[v] = true
if v.connected to s

constructor marks
vertices connected to s

recursive DFS does the work

client can ask whether
vertex v is connected to s

35

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf. source set of marked
) vertices
* Correctness:

- if w marked, then w connected to s (why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge

no such edge

set of «— can exist

unmarked

vertices “a_

on a path from s to w that goes from a
marked vertex to an unmarked one)

e Running time: each vertex
connected to s is visited once.

Depth-first search application: preparing for a date

PREPPRING FOR A DATE:
WHAT SITUATIONS
MIGHT T PREPARE. RR?
) MEDICAL EMERGENCY

2) DANCING

@)
0

L, 9 F0D TOEPENSIVE

OKAY, WHAT KINDS OF

©) FALLARM CHAR

O

D:

A

I~V A~

o]

HM. WHICH SNAKES ARE

EVERGONCIES (ANHOPPN? DPNGEROUS? LET' SEE... THE RESEARCH (OMPARING
) A) SNAKEBITE

B) LIGHTNING STRIKE

SNAKE VENOMS 15 SCATTERED

I)A)d; CORN msfam ? PND INCONSISTENT. TLL MAKE
txi‘:g!)i;uAﬂ~Aur’“k’)r- “thffifftffi:ifffffgflfJ

®)

O

xkcd

http://xkcd.com/761/

£

IMHERETO P BY (D, THE INCAND
YOUUR. YouRE TAIPAN HAS THE DEADLIEST
NOT DRESSED? VENOM OF BNY SNAKE'"

T REALY NEED To SToP
USING DEPTH-FIRST SEARCHES.

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

38

Depth-first search application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

« Edge: between two adjacent red pixels.
 Blob: all pixels connected to given pixel.

\ recolor red blob to blue

39

Depth-first search application: flood fill
Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

* Vertex: pixel.

« Edge: between two adjacent red pixels.
 Blob: all pixels connected to given pixel.

\ recolor red blob to blue

40

Paths in graphs

Goal. Does there exist a path from s to ¢ ?

S S e rrdy e by pge e
S E R L L e
sssilifetalisssesslsifelss Hr b B
RiEssiets glas %ﬁrlﬂfin#wuﬂ
ﬁA4<,ﬂH1f%.H”ﬂH1LWHJJﬁ
. By e e H = g
jnhm_f I G T
HHA, At g olfsiss
R sfesisiises = sisscpsats
T s disy Lk
Inﬁwwﬁ Hi Py st ﬁJm as
sleseiiiisiisecsiictogtittcyefiilsgste. mﬁ
s H.H mml mH 11 | O I*Inl.Hlo
THaH it asilesgss calaces
H SSeRitte i !
TH iH TH»H de m“ : p
SR L
11 | ot P oy § oy IHi o
a8 ojies :1 =t iabiet
.IHMLI — L rﬂm_rH: I s bad bu pko &=
“HH MR jogganiada] e
4 HE e .rﬂLIFI [88 IlIAJH L
R L e
et R A lee b 3 HESHE TR R

41

Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from s to ¢ ?

ﬂ

union-find V +Elog*V log* VvV 1

DFS E+V

Union-find. Can intermix connected queries and edge insertions.

Depth-first search. Constant time per query.

42

Pathfinding in graphs

Goal. Does there exist a path from s o ¢? If yes, find any such path.

S S e rrdy e by pge e
S E R L L e
sssilifetalisssesslsifelss Hrib BTt
I s i i
gigslstssicastretisctiisstotts Twrlxﬂlﬂ
inidi ey i e .?uﬁ ;
B IR T T
e drisdunr thon, olfedss
pin e tn S RS
Seytis ﬂdiﬂrubmmzrndﬁl. Srpsfeiggss
St et e b S
1) S 11 Sunsadise WLHI 1]
it ineiinsnnit st i
dgd: FWHTH : s3fgeagfe st oull
ol ; ml 1]
%TH O R spissfeitesis .
SR L
11 | ot P oy § By FHHi]
o8 ojes 31 =staifet
o U T T 1
siiee iR Tots ol RieiEs cogqciace {21 00F
SloleellssiiitolTTeledlin; 1ke e
A R T g
et R e et 3 HESE TR R

43

Pathfinding in graphs

Goal. Does there exist a path from s to ¢? If yes, find any such path.

public class Paths

Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int v) is there a path from s to v?
Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Union-find. Not much help.
Depth-first search. After linear-time preprocessing, can recover path itself
in time proportional fo its length. \

easy modification
(stay tuned)

44

Depth-first search (pathfinding)

Goal. Find paths to all vertices connected
to a given source s.
Idea. Mimic maze exploration.

Algorithm.
» Use recursion (ball of string).
e Mark each visited vertex by keeping
» track of edge taken to visit it.
e Return (retrace steps) when
no unvisited options.

Data structures.

e boolean[] marked to mark visited vertices.

* int[] edgeTo to keep tree of paths.
* (edgeTo[w] == v) means that edge vV-w
was taken to visit w the first time

dfs(0)

dfs(2)
check 0

K

dfs(1)
check 0
check 2
1 done

NH

dfs(3)

\

7 17

dfs(5)
check 3
check 0
5 done

N

w wWN

dfs(4)
check 3
check 2

4 done

check 2

N

3 done
check 4
2 done
check 1
check 5
0 done

N

edgeTo[]

Vi WN =

VI WN =

w nNO N nNo N onN

wWwNON

WwNON

Depth-first search (pathfinding)

public class DepthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private final int s;

public DepthFirstPaths (Graph G, int
{
marked = new boolean[G.V()];
edgeTo = new int[G.V ()],
this.s = s;
dfs (G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked|[w])
{
edgeTo[w] = v;
dfs (G, w);

public boolean hasPathTo (int v)

A

s)

A

A

public Iterable<Integer> pathTo(int v)

parent-link representation
of DFS tree

set parent link

ahead

46

Depth-first search (pathfinding trace)

tinyCG. txt standard drawing
\/**‘6
‘k//E

8

05

2 4

23

12 drawing with both edges

01

34

35

02

215

Z ~[0-2]

adjacency lists

~o {134
~B {42

vn A W N = O

/|
E

edgeTo[]
dfs(0) ((%} 0
dfs(2)
check 0 Q

dfs(1)
check 0 12
check 2 2.0
1 done
dfs(3)
1 2
2.0
312
dfs(5)
check 3 12
check 0 2.0
5 done 312
513
dfs(4)
check 3 0 a 102
check 2 2.0
4 done G / Z §
check 2 e e 513
3 done
check 4
2 done
check 1
check 5
0 done

47

Depth-first search (pathfinding iterator)

edgeTo[] is a parent-link representation of a tree rooted aft s.

@ e edgeTo[] 0

v A WIN R
w w N ON

O N WU x
O N W WUV |T

public boolean hasPathTo (int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>() ;
for (int x = v; x !'= s; x = edgeTo[x])

path.push (x) ;

path.push(s) ;
return path;

Depth-first search summary

Enables direct solution of simple graph problems.
v ¢ Does there exists a path between s and ¢ ?
V' ¢ Find path between s and +.

Connected components (stay tuned).

Euler tour (see book).

Cycle detection (see book).

Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
 Biconnected components (beyond scope).
* Planarity testing (beyond scope).

49

» breadth-first search

50

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s) \\MC i\
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v \[v//i\
- add each of v's unvisited neighbors to the queue,

and mark them as visited.

Intuition. BFS examines vertices in increasing distance from s.

51

Breadth-first search (pathfinding)

adj[]

marked[] edgeTol[]

N [2ala]
N NO
NOOnmmm

Or-lNM< N

o= NMS N

|-

OoOr-aNM < N

(22Nl
Nt NO
oo mm

Or-laNMm < 1IN

o o o

Or-laNM< N

- —

Or-iANM< N

o~ <t N O
o LN m m

Or-laNM< N

oo NMNO

Or-riaNM< N

e

O-ANM< N

< NO
oo,

Or-laNM< N

oo NNO

Or-iaNM< N

FEEEREE

O-aNM< N

o

< N
n m

O ANMm < N

oo NNO

O ANMT N

-

Or-IaNM < N

()

A

“

Q

o

Q

P

o

-
~ Vv
i :
) 0 “
o 5 —~ 0
" & = 3
< = S 2 N I
O g 0T = Eouou
I~ =~ oSoaeaz <
S " e Suvw S9FETF
5 v o gf B0% 855
= A g g o ¥ B9 0o
qa o~ " =g 488
4 gon R o 89
o} P2 0 —~ 0O - o
- nus.l. V(f
o Ie[(.l{ —h—
5 vV BT Py

(0] (] 2 O
0 5 oa M A AW
8 S YR
5 O o E E - -~
-~
H
p{ —_—

Or-laNM< N

oo NNO

O NM<S N

FEFERFE

OoOr-IaNM < N

OO asC

©

<

52

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s
in a connected graph in time proportional o E + V.

Pf.
e Correctness: queue always consists of zero or more vertices of distance &

from s, followed by zero or more vertices of distance & + 1.

* Running time: each vertex connected to s is visited once.

standard drawing dist=0 dist =1 dist = 2
53

Breadth-first search application: routing

Fewest number of hops in a communication network.

TAM
v Gwe ANL

D) Y @ T

s —Fo—Crars
ILLINOIS

SCOTT 'ELVO‘R O
N's
DCEC ' L NOR
SDAC A
“IT.E '

LY vt)
PENTAGON O
GUNTER LONDON

v SATELLITE CIRCUIT
QO P

O ne

& PLURIBUS 1MP
(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS)

NAMES SHOWN ARE 1MP NAMCS, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977

54

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

ano The Oracle of Bacon

l “ » [EA) | =< l 4+ L8 | € rep e 0r sl eofbaten 00g/ Cg-Bis Imeviel nki game = O&Nrsiname = Kevie « Saco ©

o O N Q-

[The Curmis | woe of Mugic COS 126 FOR ACM Awands Wang 514 NoClachy | Memepage Stecks COSIZEFOT TPM RSS (1742)v Eschaten

THE ORACLE

OF BACON

Help

Credits

How it Works
Contact Us
Other games »

Buzz Mauro

Sweet Dreams (2005)]
Tatana Ramirez

Interior de un silencio, E1 (2005) |

Andres Suarez
Carlita's Secret (2004) |

Paula Lemes (I)

Frost/Nixon (2008)

Kevin Bacon

ind bnic More options >>

http://oracleofbacon.org

i ;g geai300 XIS
<=
DEy

Endless Games board game

PN

peg

Uma Thurman
acted in

Be Cool (2005)

with 1

Scott Adsit
who acted in

The Informant! (2009) >
with

Matt Damon

SixDegrees iPhone App

55

Kevin Bacon graph

 Include a vertex for each performer and for each movie.
 Connect a movie to all performers that appear in that movie.
» Compute shortest path from s = Kevin Bacon.

. Patrick Dial M Grace
— Caligola Allen for Murder Kelly
\ / /
Glenn The Stepford .
Close Wives To Catch = :1gh
a Thief oon
John
Gielgud / \
Portrait
of a Lady - | The Eagle |
Nicole Has Landed

I Kidman / N

—| Murder on the =~ L
Orient Express Cold Donald

/ \ Mountain Sutherland
7N\

An American John Animal
Hamlet |— Haunting Belushi House

/l Vernon / \ \N | ~» 7

\ yd

__|Joe Versus
the Volcanof

7\

performer
vertex

Kathleen
Quinlan

Dobtcheff
obtche _| The
Woodsman
7 TN
movie l \w“1d
vertex = i
| P Things The River -
Jude 7 , A\ — Wild -

[

\ 7N

The Da
Paul L
Vinci Code
L~ Meryl
— Enigma Streep Serretta
Kate Wilson

7
Winslet Titanic Yves
L B 4 ~ Aubert Shane
Eternal Sunshine Zaza

of the Spotless fmm
Mind
Tr7 I \

56

Breadth-first search application: Erdos numbers

F/
e s
T .
: /¥ . EEEA ; HAary E= Seawang AT
(Biazamis Tyl A, 2 H B05LogAS /’ b%\ - y oy e s rootnieN) ebury

N B |
| I ¢ £46L Wederd:
i {(: "";__""':'.";...*z:'g_:“l-— i _,/ 8ELes, eierdi

/
VAP E i aaT 2400 £848
i R : % a5
TEEE0) o Redd du l.. {-‘n’l‘gh mu Lo e Be8sm
HUANE, /';;sums

\

l

"\

HEDRrariEs]
CEErAvrE

KeT RiG FIAFRiged 3
X -
e, . TAYLE Luniey) o ‘
- '

.,,-

tiitaes)
e, £ 18R BAN, M‘SH l:-‘_/

’?!Mi ?AISO#J m y
}‘L ANCYEAL _‘ '

\MH‘ & idd

sew 2 u o
Su.nf#u'*
;a‘ ﬁvr!
e \\\Hac LAND)

YranD il ' _/}._._._.. : ﬁa::: Lz
grm ANCD] \ = "//;gf ft{*“344xaa !ln?h:l
(e, t L __@ s:xmz.u*,
et un} i “5 mw‘”mﬁ P —
-—M =

Gt

hand-drawing of part of the Erdos graph by Ron Graham

T e _' et T
of L. Gun8ERTT . i 105) wEVE XY ILE
' e (053 ot oo (T
] A s
C:) TAHTY EinSTEN SepnsRAdel
TARNIK SYRAVE BISEIN!
i, Pt £ Be35ATS BuRsNESS MaLiPw,
ARWIA ’ awid) (CEVRAN
B HAEWIE LIAA
KNG
Qoxarys 0o H sl < Teren ey (Hicsaer
3 2B ZAAF, £ aRiia QLYRED
&40 34 ~ wEurt S LOARE p THarnoso4) Ven NEGHANI
A} §TANLE
oo ' HIven, e N Trs v anD (Fhen
Be24 Ssadtsl)f (Rovauiy Finteovird) ¥ 5 e LAGALIA "R EAHIL Y
— FAGCEES ot
RIALNE f AuEd B e PR T.®ea44r) fAxse
RAT. spaHCAR ;
Gads Gamos @ g464 : LAINIAE ~FeiTod
Gow i ’
i 3 L 5 STRAIENT
' W EARKO LY '
A m:}" .\“ \“ : i } BIES=Ta 7R, Hedid e j
[—_— :".“—-f—“-.__...,a' porHiLRIL ,
' (RED = ’1 288 EwE
ﬁ% e GO pens so0l \ 1ovdS2 T
dhien 3 e e = TINoelD) frunes
PRI e Y KLEFHAL \E‘: 7 \ == WHITE TP TRAIE
i :-urmu --‘. ‘3.'.' i § w
LENMAL ; .
n --—3; Wi d2ewd V“’“" : — ~, cwn'm_f.r 2 REHMINES. (2420
;,. (& ranns I BonoY,
i,\\r —‘m i‘ } ‘T : FoLxMad N 2 MURTY
}i{éﬂ“f” 3 Rl - BEinErd) \[Gosens
2t £98 e HELRLI
{)'?.a‘;uuu.v o e g i L4 T
l

=
Q
-]
o
2]
o
=
]
=]
~
[+
et
e
]
w
)
[«
E]
(=]
2
(=9
=]
—r'

57

» connected components

58

Connectivity queries
Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w ?
In constant time.

public class CC

CC (Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?
int count() number of connected components

int id(int wv) component identifier for v

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

59

Connected components

The relation "is connected to" is an equivalence relation:

e Reflexive: vis connected to v.

e Symmetric: if vis connected to w, then w is connected to v.

 Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

W 0 J o BT d WN K O

=
o

3 connected components

R
N R

Remark. Given connected components, can answer queries in constant time.

id[v]

o

N NMDMNMDNRPRPPRPOOOOOOo

60

Connected components

Def. A connected component is a maximal set of connected vertices.

ol SRS S L
ﬂmﬁfuj@ HETHIH T T e
Srsiisiat]asset gt Sl sclecsastotastontt
A0 A m ﬂﬁﬁizfﬁwmeuH
i Eeirs s i fRissttin §oI K QMR T lotsfy
In.Hﬁ%H %c 33 et e
g.Banfeddi i mme i e
e, ey ST Ifr
P by My] 2issogsads
setasstasstiotecsisiiatPiilsess s
I.ui_zz_ﬂ 5 Lﬂmx” wnsz H b mrnh
S P g e S T B T R g B R e
T e el ! ! ! Lod ! I
; i gigecfassssssdggalagast HE
.] 00N o oo i) []
SR Sarer. iy ede SHER I e
S sicilestseots U H
_ 28888 geiissssesislsy e -
11 Lerp il e St b
of :Hmﬂ‘zi getinieiitialfas
L et anr:HuxH.fH =
=y TS =0T e T,
~H Hew Qe b b T HHH 2
ma—det e s Haal Hatss
ol % .. | b ﬂHEHHH
S i fer -+ RS TEY !

61

63 connected components

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

o P OO

o R

tinyG. txt

UT O NOLOPRPRPROuUTOoD ©O M~ O

62

Finding connected components with DFS

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if ('marked|[v])
{
dfs (G, v);

A

A

A

count++;

public int count ()
public int id(int v)
private void dfs(Graph G, int v)

A

id[v] = id of component containing v

number of components

run DFS from one vertex in
each component

see next slide

63

Finding connected components with DFS (continued)

public int count()
{ return count; }

public int id(int v)
{ return id[v]; }

private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count;
for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);

number of components

id of component containing v

all vertices discovered in
same call of dfs have same id

64

Finding connected components with DFS (trace)

count marked[] id[]

0123 45¢6 7 8 9101112 0123456 7 8 9101112

dfs(0) O T 0
dfs(6) o T T 0 0
check 0
dfs(4) O T T T 0 0O O
dfs(5) o T TTT 0 000
dfs(3) o T TTTT 0 00O00O
check 5
check 4 0
3 done
check 4 Q e e
check 0
5 done 9 9 @
check 6 e’e @\@
check 3
4 done
6 done
dfs(2) O T TTTTT 0O 000O0O
check 0
2 done
dfs(1) O TTTTTTT 0000O0O0O
check 0
1 done
check 5

0 done

65

Finding connected components with DFS (trace)

0 done
dfs(7)
dfs(8)
check 7
8 done
7 done
dfs(9)
dfs(11)
check 9
dfs(12)
check 11
check 9
12 done
11 done
dfs(10)
check 9
10 done
check 12
9 done

count

marked[]

id[]

=

4 56 7 8 9101112

TTTT 0
TTTTT 0
TTTTTT 0
TTTTTT T 0
TTTTTT TT 0
TTTTTTTTT 0
N 0] Y0
(D))
(3) (919

o
o
o
o
o

o
o
o
o
o

(@]
o
o
o
o

(@]
o
(]
(@]
o

56 7 8 9101112

o o
=

oo
el
|_l
N

00112222

66

Connected components application: study spread of STDs

1o
a oy
| W, SO T /
s X ¢
‘\/;-_},.-_t._i.\ o ¥, _e . "‘,(""f .—>\ ./\\o
. QB AT e ~, (Do N
T4 i ol S AR
* —~ LR =
7‘»—/7/,,—0
~1)’\’\» A,
¥ /e
L) " '[
A én R ——s—

I & DMale
-— Female

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

67

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
* Vertex: pixel.

e Edge: between two adjacent pixels with grayscale value = 70.

* Blob: connected component of 20-30 pixels. N\ black = 0
white = 255

4

Particle tracking. Track moving particles over time.

68

» challenges

69

Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult? oo
* Any COS 126 student could do it.
* Need to be a typical diligent COS 226 student. >

Hire an expert.

Intractable.

No one knows.

Impossible.

= D DNV R OO OO
o U1 d W Wo LN K»

& d DNV R OO OO

o U1 & W Wo 1D K

Bipartiteness application

et
R el
- /
he Y ¢
i N o ’ 8 2
Eagtetetd ¥, - t:*:k ._>\ -
. YA ol +~‘—4 3, LI
%)j l\f‘ .;:—K‘!o r/.,
.
(4/ ’%*‘» "..»'3\.’(\
o BRCE P o ads e o g o
¢ Ly v

P @& NMale
—_—— Female

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of

adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

71

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

= D DNV R OO OO
|
o U1 d W Wo LN K»

72

Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?

* Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert. Y=smem ER == ==l

Intractable.

No one knows.

Impossible.

= b W dDNDMNPREP OO OO
o U1 B WNOD OGN R

Bridges of Kénigsberg
The Seven Bridges of Konigsberg. [Leonhard Euler 1736]

“...in Konigsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ...
and these branches are crossed by seven bridges. Concerning these
bridges, it was asked whether anyone could arrange a route in such a

way that he could cross each bridge once and only once.”

Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).

74

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?

* Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert. 0-5-3-4-6-2-1-0

Intractable.

No one knows.

Impossible.

= b W W hbDNPRKPLr OO OO
o U1 ol Moy DD B

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?
* Any COS 126 student could do it.

Hire an expert.

Intractable.

No one knows.

Impossible.

Need to be a typical diligent COS 226 student.

04,

13, 2<2,

3<6, 4<>5, 5«0,

b W Ww o O o o
1 |
o U1 1 & O TN B

| [
O B b O1bd O O

ug W NhDNPRFPrBRPLR OOOo
1 1

i

76

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

Any COS 126 student could do it.

Need to be a typical diligent COS 226 student.
Hire an expert.

Intractable.

No one knows.

Impossible.

b W Ww o O o o
1 |
o U1 1 & O TN B

77

