Undirected graphs

4.1 UNDIRECTED GRAPHS

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
* Interesting and broadly useful abstraction.
* Challenging branch of computer science and discrete math.
* Hundreds of graph algorithms known.
» graph API * Thousands of practical applications.

» depth-first search
» breadth-first search

: » connected components
Algorithms P
FOURTH EDITION >Cha"enges

RoBERT sEpcEwick | KEVIN WAYNE

Algorithms, 4 Edition 0 Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - October 27,2011 3:02:23 AM 2

Protein-protein interaction network

http://en.wikipedia.org/wiki/Internet

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams

Kevin's facebook friends (Princeton network)

aterial scienc

Engineering

g RO
Bhiosopits, oo,
° o

Davide GIM
o Robert J. \ande rbel
 Thais Melo
Chemical
Engincering

 Debbie Peikes
Norman yu
Sophie

Qingzhen Wapg

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

10 million Facebook friends

One week of Enron emails

benjamn rogers & shankman v weldon
KEY. bilragp
EMPLOYEE (E-MAIL ADDRESS):

Ve kamin
cara semperger L % racy goaccone
c.geen ° theresa staab
AT LEAST ONE E-MAIL CONTACT- [Paris weigon] LL v 0 0 ° ® 0 o iy
BETWEEN EMPLOYEES chopecrcrey @ °
craigdean @ susan scott
dan hyd L e susan.
annymocarty_ 1 ® don bavghman L
darmeh schookrah

@ stophanio panus.
daongeon o

@ anley horon
Gavid dolainey

°

% @ stacy dckson
ol f
aichecsurm g & cisdoand © sholloy corman
tenpatngrs rank i @Ay a shacke
° geollsicrey @ g bilwiams @ sara shackleton
dman g hary wora @ ancrew s © saly bock
lowis
drewsossum P e o The analysis detected drea ing @ ryan singer
aooma " an anomaly: a new - @simn sy
° Jmvne mail address for this @ sovenen o
anchauger e & o tavorato @ person, who had been | ® scottneo @ rickbuy
e s— jeting ® “philip.allen” for 131 © rchadshapro © rchard sancers
jim schwieger @ previous weeks. |
cizsbeth sager g
ooparks @

emolmcaughin g

® louisekichen © fcharding
et ® / J-
Lot o Y

® et dasove
@ phmpiove
o ° © barrytychotz
ge.soberg @ Joba forney @ [iatien] et o @ ot homas
.allen w.perera
gorald nemoc @ o g ® mscon
© vadi pmency
fonathan mokay @
Sreg whaley @ \ Y o ® torisuypendat ® m_presio
jvan hemandez
hoiden salisoury @ ! p* © tom donotoe © monika caushal
oy townsand P
e oo ke grgsby
Jarmes dertick @ ket holst @

® thomas martin @ mive
Jason willams @ heviruscr @
Jason wolte @

® ke meconnell
on.south
ey

hodge @

© michelle okay

Joftroy shankman @

© michoto cash
o © m tomey
jeft.skilling ® i, @ mattsmm
/ tamec @ miocarsn P @ o @ © makwhit
7 mkomegs | .
L ibams mike. swerzbin ® mark taylor
s @ mcriaue sanciz . R © maknasdcke
Company leaders e-mail :u‘ v orique sanchez o k:u.o
less frequently, leaving [. o o T kehadde Sowrce:
TR Al a BiT) g b stepenovitch maria hear Sources:
Visualizing Friendships" by Paul Butler some communication 1o | e ien ® 3 o Oimsa" Gary
subordinates. ioin® @ o o O i Park. Jomms.
| snrm @ Cuagis arkc o
amiossr. 7 9@ K T P ovconone Universty
kate symes. V. larry campbel
pens hywit Kimberty watson
Finding Patterns

mann
kenneth.lay N vard

In Corporate Chatter

The evolution of FCC lobbying coalitions

Framingham heart study

Consolidated Companies
Vermont PS8 CO Tel. Association o Fitch Afforcable Telecom _ProityOne Raw Bandwidth
Vermont DPS i Rovers OR Tel. Associaion GretPlains Comm . e \ A Rudden
- MT Tel. Associaton @ L]
N\ 2PSC yrs® WAlnd-Tel Associstion Biuegrass Wirsless Hiawatha Broadband
@ WyomingPSC » . Focal Noright 8 Itegra Telecom % Knology
. A Starpower 4 S
Missoula Plan Sug > * TeiCove
P i i Jpdana URC atons. e Baigedcn EarthLink® o asonsiie
Rural Utiities Service =y ® U5 TeloPeche O o Cormrmtiatons
. son .Mﬂ"'a"a PsC ’\ ‘Access One v .lcl\ilycnnsuhmg
e - Pen i PSC e 7 i h, McClure Telephone
Lncolnale Neswor . New Jersey BPU ROV Penn Telecom New Hope
Oxdord Telephone pepse | Mow?
» P .Delaﬂane PsC { . North River
AtContact Communications. NewYorkPSC o f 3 ShesTel Telaghone Cos.
* Vinal Geosatelite . N ‘ < Pembroke
. 7 e
[P Global Crassing ; o i
‘@ Ronan Telephone TIA X 1
. . {
jBasis! }
ubver.com = i
pasn om o
. 0
EPG o \,\\
®._mmiC Hyperoube' |
L] .Pm@m '@ - 8
CallSgan | ATET, g == 7
CoBark o k. &
. Callig Covadf; 4
ACB * = . £ =\ { 45
. . .s;m \f 4 NSV Wadsiue
Texas O N
o crA Mot Public Service Telephone:
b e AV Charter Communications ® Toanes Telecommunications
- - Sn— .
el e Venture Communications Cooperative @
Ciizens Telephane B Amesca DCIVoie Scluions . Souh Sope
& Kingdom Telephone Comcast 2
M Verizon Wirelgss o o State of H:
~ ¥ e Wames Cable Core Communications S laveai
Lauttamus bson L Time Vi \ K State of Alaska
. American Celldar 0 metiemer *
. rr Wireless Copmunicat Celhudar South . . \KMC Telecom
Advarced Paging . 7 ¥ Dm) Telnes Worldwids: Lghshp CTC ® &P Communications Advisory Counsel
S e Weeless e e 8 el 7]\ S Teleoom . ® . TDSTelkeoom
@ Sprmpls | gunComWieless @ . R\ e R CURS Conversent o Peopies Teephone Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
. VoiceStream Wireless g '\ US/Calletar 7 ki amers NECA Cascade Usiities
! lutar One NTCA ;
[E—— e > Pl o bisre @ ° Malala Communcatons 8. Beaves Crok Telephone Each cnrcle.(node) .represents one person in the data se%, There.are 2200 persons in this subcomp?nent of the §oc1al
_A"Efx:;':m . e eees S [ERTA S e Trans-Cascades Telephone network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
focorm rican Telephone v Montana ronter Windsiream . Neral maons. NS . N , . S - o 9 "
& b e Smith Bagley . @ @ Embn W Lo ragon abo U is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
Z onference Parrers orvIdaho Ulites
.FB;':'W 2 o o _E‘S‘E"’M 'w‘*v?";’a' FairPoint e ITTA NRTA JRD=Teleptione i yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
Conferencir lowa Network Services: fidwest Wireless . = . it dephone N L . . . N N N
* . Baraga Telephone 8 Siue Casa Communicaions 1owa Tel R et Halix Telaphone. * ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
. South Dakota Network . * Cossolidated Communications Great Lakes Communicatons Ploneer Telephone & d familial ti
L Jelscape Communicatons 5 SureWest S OmiTel . Stayton Telephone. enotes a familial tie.
. . .
“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010 “The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007
9

Graph applications Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

communication telephone, computer fiber optic cable
circuit gate, register, processor wire Two vertices are connected if there is a path between them.
mechanical joint rod, beam, spring
vertex
financial stock, currency transactions cycle of edge
length 5\
transportation street intersection, airport highway, airway route
path of
internet class C network connection « length 4
game board position legal move vertex of
degree 3™\
social relationship person, actor friendship, movie cast
neural network neuron synapse
connected
components
protein network protein protein-protein interaction
chemical compound molecule bond
11

Some graph-processing problems

Path. Is there a path between s and ¢?
Shortest path. What is the shortest path between s and ¢ ?

Cycle. Is there a cycle in the graph?

Euler tour. Ts there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?
Connectivity. Is there a way o connect all of the vertices?

MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Graph representation Graph representation
Graph drawing. Provides intuition about the structure of the graph. Vertex representation.
Caveat. Intuition can be misleading. * This lecture: use integers between 0 and V1.

* Applications: convert between names and integers with symbol table.

symbol table

two drawings of the same graph

0 arallel
sel]; loop Pe iz

Anomalies. .@m'o
_V

Graph APT

public class Graph

Graph (int V)
Graph (In in)
void addEdge (int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()

String toString()

In in = new In(args[0]);
Graph G = new Graph(in) ;

——

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.println(v + "-" + w);

-—

Typical graph-processing code

{
i T int degree = 0;
compute the degree of v for (int w : G.adj(v)) degree++;
return degree;
}

public static int degree(Graph G, int v)

create an empty graph with V vertices

create a graph from input stream

add an edge v-w

vertices adjacent to v

number of vertices

number of edges

string representation

read graph from
input stream

print out each
edge (twice)

public static int maxDegree(Graph G)
{
int max = 0;
for (int v = 0; v < G.VQ; v++)
if (degree(G, v) > max)
max = degree(G, v);
return max;

compute maximum degree

public static int avgDegree(Graph G)
{

compute average degree return 2 * G.EQ) / G.VO;

int count = 0;
for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2;

count self-loops

public static int numberOfSelfLoops(Graph G)
{

Graph API: sample client

Graph input format.

tinyG. txt

V\l3 E % java Test tinyG.txt

13« 0-6

05 0-2

3 @ :

01 (&) O® 0-1

9 12 O 0-5

64 1-0

5 4 (3) (19 2-0

02 0 [N\ 3-5

nn O Ead) 34

9 10

(7) g 12-11

9 11 12-9

53
In in = new In(args[0]); read graph from
Graph G = new Graph(in); input stream
for (int v = 0; v < G.V(); v++) T ——

for (int w : G.adj(v)) | edge (twice)
StdOut.println(v + "-" + w);

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

!

W d BB WWOOoOoOo
W o U1 O N K

©
[y
o

11
12
12

©

20

Adjacency-matrix graph representation Adjacency-list graph representation

Maintain a fwo-dimensional V-by-V boolean array:; Maintain vertex-indexed array of lists.

for each edge v—w in graph: adjiviiwl = adj[w][v] = true.

two entries
for each edge

() ()

/
L9
m

4 5 6 7 8 9 10 11 12 0
o 0o 1 0 1 1 0 0 0 0 0 0 1
° o o 11 o 00 0 0 0 0 0 0 o0 ° ° o 2
2/ 1 0 0N0N0 O O O O 0 0 0 O i
300 0 0o ON1N1 0 0 0 0 O0 0 © s
e ° al o 0o o0 1 N1 0 0 0 0 0 O o o 6
/ sl 1 0 0 1 1\ 0 0 0 0 0 o / 7
e ¢l 1 0o o o 1 o0 0 0 0 0 o0 e 8 representations
710 0o 0o 0o 0 o0 0 0o 0o o0 o0 12 of the same edge
s| o o o 0 0 0 0 0 0 0 0 0 "
o @ s/ o o o o 0o 0o 0o o 0 0 1 1 1 o @ 12
[0 0 0 0 0 0 0 0 0 1 0 0 0
{0 0o 0o 0 0 O 0 0O o0 1 0 o0 1
@ @ 200 0 0 0 0 O 0 O O 1 0 1 0 @ @
21
Adjacency-list graph representation: Java implementation Graph representations
In practice. Use adjacency-lists representation.
public class Graph) .) .)
(* Algorithms based on iterating over vertices adjacent to v.
private final int V; adjacency lists * Real-world graphs tend to be "sparse.”
private Bag<Integer>[] adj; “T| (using Bag data type) \
huge number of vertices,
public Graph(int V) small average vertex degree
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V], <«—F— Créate emp.ty graph
for (int v = 0; v < V; v+) with v vertices sparse (E =200) dense (E=1000)
adj[v] = new Bag<Integer>() ;
}
public void addEdge (int v, int w)
{
adj[v] .add (w) ; | addedgev-w
adj[w].add (v) ; (parallel edges allowed)
}
public Iterable<Integer> adj(int v) <«—+— iterator for vertices adjacent to v Two graphs (V =50)
{ return adj[v]; }
}

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
* Real-world graphs tend to be “sparse.”

\ huge number of vertices,
small average vertex degree

representation space add edge edge between iterate over vertices
v and w? adjacent to v?
E 1 E

list of edges E
adjacency matrix V2 1* 1 \Y,
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges

Maze exploration

Maze graphs.
e Vertex = intersection.
* Edge = passage.

o=l o

ey

intersection passage

Goal. Explore every intersection in the maze.

25

» depth-first search

26

Trémaux maze exploration

Algorithm.

* Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

28

Trémaux maze exploration

Algorithm.

* Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur:;
Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

R
-
o

7l

29

Maze exploration

]

31

Maze exploration

] I

T | -
_ L T

I Irl

a | 1

ﬂ_‘ioj_ _
L [|_J
| |

Bl En

@

30

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications. [ahead]
* Find all vertices connected to a given source vertex.
* Find a path between two vertices.

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

public class Search

Search (Graph G, int s) find vertices connected to s

boolean marked(int v) is vertex v connected to s?

int count() how many vertices connected to s?

Typical client program.

¢ Create a Graph.

* Pass the craph to a graph-processing routine, e.g., search.
* Query the graph-processing routine for information.

Search search = new Search(G, s);
for (int v = 0; v < G.V(); v++)

i (e wna S2el((9) print all vertices

StdOut.println(v) ; «— connected to s
33
Depth-first search (warmup)
public class DepthFirstSearch
{ marked[v] = true
private boolean[] marked; M v eonicaad @S

public DepthFirstSearch(Graph G, int s)
{

marked = new boolean[G.V()];
constructor marks

dfs (G, s); < vertices connected to s
}
private void dfs(Graph G, int v)
{

marked[v] = true;

for (int w : G.adj(v)) <«——+—— recursive DFS does the work

if ('marked[w])
dfs (G, w);

}
public boolean marked (int v) PR client can ask whether

vertex v is connected to s
{ return marked[v]; }

35

Depth-first search (warmup)

marked[] adj[]

dfs(0) 0T
1

Goal. Find all vertices connected to s.

wwunoon
onsRNR

Idea. Mimic maze exploration.

8

. T ehenk 0 o7 opz1s
Algorithm. &%—j A
e Use recursion (ball of string). oo
* Mark each visited vertex. deEE:g %% I
* Return (retrace steps) when no 1 done gé@égl I

unvisited options. o5

R

@i?@)
N

Data structure.

. e . dfs(5)
* boolean[] marked to mark visited vertices. check 3 wl
5 done
dfs(4)
check 3
g @ﬁ@g\ﬁd
check 2 @

3 done
check 4
2 done
check 1
check 5
0 done

nawNnRo
-

[PRSTINIIS
(R ———

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf' source
e Correctness:

set of marked

/ vertices

- if w marked, then w connected to s (why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge

\ no such edge
set of «— can exist
unmarked

vertices

on a path from s to w that goes from a
marked vertex to an unmarked one)

* Running time: each vertex
connected to s is visited once.

36

Depth-first search application: preparing for a date

PREPPRING FR A DATE:
OKAY, WHAT KINDS OF
\JHAT SITUATIONS ™ EMERGENCIES CAN HPPEN?
MIGHT T PREPARE. RR? i) A) SNAKEBITE
i) MEDKAL EMERGENCY 8) LIGHTNNG STRIKE

2) DANCING O FALLRIM HAR
2) 0D ToO BPENSIVE S
N °1

A
HM. WHICH SNNQS%‘J

DANGEROUS? LET'S SEE...

DA)D (RN NAKE 7
) GARTER SNAKE. 7
©) COPPERHEAD

%

THE RESEARCH (OMPARING

SNAKE VENOMS 1S SCATTERED
PND WCONSISTENT. T(LL MAKE
A SPREADSHEET T ORGRNIZE IT:

OD O

&

xked

http://xkcd.com/761/

TMHEREOPKK. BY LDy, THE INCAND
YOUUP. YOURE TAIPAN HAS THE DEAQUEST
NOT DRESSED? VENCHM OF AlY SNAKE”

]

KZ

g

T REALY NEED ToSToP

USING DEPTH-FIRST SEARCHES.

Depth-first search application: flood fill

Change color of entire blob of nheighboring red pixels to blue.

Build a grid graph.
* Vertex: pixel.

+ Edge: between two adjacent red pixels.

* Blob: all pixels connected to given

pixel.

recolor red blob to blue

37

39

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

Depth-first search application: flood fill

Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.

Vertex: pixel.
Edge: between two adjacent red pixels.

Blob: all pixels connected to given pixel.

recolor red blob to blue

38

40

Paths in graphs

Goal. Does there exist a path from s to ¢ ?

Pathfinding in graphs

Goal. Does there exist a path from s to 1? If yes, find any such path.

Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from s to ¢ ?

preproceSS]ng fime

union-find V + E log* V log*V \%

DFS E+V 1 E+V

Union-find. Can intermix connected queries and edge insertions.
Depth-first search. Constant time per query.

41 42

Pathfinding in graphs

Goal. Does there exist a path from s to 1? If yes, find any such path.

public class Paths

Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int v) is there a path from s to v?
Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Union-find. Not much help.
Depth-first search. After linear-time preprocessing, can recover path itself
in time proportional to its length.

easy modification
(stay tuned)

43 44

Depth-first search (pathfinding)

Goal. Find paths to all vertices connected
to a given source s.

Idea. Mimic maze exploration.

Algorithm.
* Use recursion (ball of string).
* Mark each visited vertex by keeping
* frack of edge taken to visit it.
* Return (retrace steps) when
no unvisited options.

Data structures.

* boolean[] marked to mark visited vertices.

* int[] edgeTo to keep tree of paths.
* (edgeTo[w] == v) means that edge v-w
was taken to visit w the first time

Depth-first search (pathfinding trace)

tinyCG. txt

standard drawing

adjacency lists

dfs(0)

dfs(2)
check 0

dfs(1)
check 0
check 2
1 done

dfs(3)

2 9 I
|

R
®

(K

i

4

y

©)
()

IN

edgeTo[

0

RSN

dfs(0)

dfs(2)
check 0

1¢

dfs(1)
check 0
check 2
1 done

(9

dfs(3)

e@ige@{—

RS
é—@ \Q

dfs(5)
check 3
check 0
5 done

dfs(4)
check 3
check 2
4 done
check 2
3 done
check 4
2 done
check 1
check 5
0 done

©
0®

MK

A

NN

edgeTo[]

0

~e

“ewn e

G wne

w ~vown ~Nown on

wwnon

47

Depth-first search (pathfinding)

public class DepthFirstPaths

{

private boolean[] marked;
private int[] edgeTo;
private final int s;

public DepthFirstPaths (Graph G, int s)

{

}

private void dfs(Graph G, int v)

{

marked
edgeTo
this.s
dfs (G,

marked[v] = true;
for (int w :
if ('marked[w])

{

of DFS tree

= new boolean[G.V()];
= new int[G.V()];
=s;

s);

G.adj(v))

edgeTo[w] = v; A |
dfs (G, w);
}
}
public boolean hasPathTo (int v) <+ ahead

public Iterable<Integer> pathTo(int v)

Depth-first search (pathfinding iterator)

edgeTo[] is a parent-link representation of a tree rooted at s.

edgeTo[] o
0
©,
© @
® ©

[V RF VN
wwN o N

X P
5 5
3 3
2 2
0 0

public boolean hasPathTo (int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>() ;
for (int x = v; x != s; x = edgeTo[x])

path.push(x) ;

path.push(s) ;
return path;

parent-link representation

set parent link

46

48

Depth-first search summary

Enables direct solution of simple graph problems.
v ¢ Does there exists a path between s and ¢?
Y ¢ Find path between s and ¢.

* Connhected components (stay tuned).

* Euler tour (see book).

* Cycle detection (see book).

* Bipartiteness checking (see book).

Basis for solving more difficult graph problems. » breadth-first search

* Biconnected components (beyond scope).
* Planarity testing (beyond scope).

49 50

Breadth-first search Breadth-first search (pathfinding)

Depth-first search. Put unvisited vertices on a stack. q marked) edgeTol] adi[]

T

Breadth-first search. Put unvisited vertices on a queue.

nawNRO

@

Shortest path. Find path from s to ¢ that uses fewest number of edges. private void bes(Graph € fnt 9

Gl
oo

Queue<Integer> q = new Queue<Integer>();
gq.enqueue (s) ;
marked[s] = true;
while ('q.isEmpty())
{
Put s onto a FIFO queue, and mark s as visited. int v = g.dequeue();
for (int w : G.adj(v))
if ('marked[w])
{

wawnRo
wawnRoO
wawnO

[

BFS (from source vertex s)

N

swae
nawNRO

e
wawNRo
onmoo

ewNRo

Repeat until the queue is empty:

- remove the least recently added vertex v

gq.enqueue (W) ;
marked[w] = true;

and mark them as visited. edgeTo[w] = v;

©anny ©)

®
&
()

wawnRoO
nawNRoO

4

onnoo

- add each of v's unvisited neighbors to the queue,

wawNRO
e
wawNnRo
onmoo

wawNRO

,}
© (©
®
E’;

©

wawnRoO
onnoo
nawNRoO

Intuition. BFS examines vertices in increasing distance from s.

Breadth-first search properties Breadth-first search application: routing

Proposition. BFS computes shortest path (number of edges) from s Fewest number of hops in a communication network.
in a connected graph in time proportional to E + V.

Pf.
* Correctness: queue always consists of zero or more vertices of distance k

from s, followed by zero or more vertices of distance & + 1.

* Running time: each vertex connected fo s is visited once.

e SATELLITE CIRCUIT

T
a e
& PLURIBUS 1MP
(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL

SATELLITE CONNECTIONS)
e NAMES SHOWN ARE 1MP NAMCS, NOT (NECESSARILY) HOST NAMES
e ARPANET, July 1977
standard drawing dist =0 dist=1 dist = 2
53
Breadth-first search application: Kevin Bacon numbers Kevin Bacon graph
Kevin Bacon numbers. * Include a vertex for each performer and for each movie.

* Connect a movie to all performers that appear in that movie.

ano
Lelrjlclia)l)(+il®) ¢
(X0 The Curis | soe of Vs COS 176 768 AOH Awirés Wang 514 NcGancy

THE ORACLE
OF BACON

» Compute shortest path from s = Kevin Bacon.

Buzz Mauro

‘Sweet Dreams (2005) |

Tatana Ramirez

Interior de un silencio, EI (2005) Uma Thurman

Andres Suarez Be Cool (2005)
with

Carlita's Secret (2004) | Scott Adsit

no acted in performer
Paula Lemes (1) The Informant! (2009) 2> / vertex
ith

FrostNixon (2008) | MaatE Banion:

Kevin Bacon movie
vertex

Q

Lookup

http://oracleofbacon.org SixDegrees iPhone App

Breadth-first search application: Erdds numbers

: DS
7 > et 77
- . il | = Qs \
! ' N5 : \Uilll 77 e Gy

hand-drawing of part of the Erdés graph by Ron Graham

Connectivity queries
Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w ?
in constant fime.

public class CC

CC (Graph G) find connected components in G

boolean connected(int v, int w) are v and w connected?
int count() number of connected components

int id(int v) component identifier for v

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

» connected components

58

Connected components

The relation "is connected to" is an equivalence relation:

» Reflexive: v is connected to v.

* Symmetric: if vis connected to w, then w is connected to v.

 Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[v]
0 0
@) Lo
2 0
3 0
ORORO s o
(o =19 5 o
e o 6 0
7 1
(1 =(12) s 1
e 9 2
10 2
3 connected components 11 2
12 2

Remark. Given connected components, can answer queries in constant time.

60

Connected components

Def. A connected component is a maximal set of connected vertices.

63 connected components

Finding connected components with DFS

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if ('marked([v])
{

dfs (G, v);
count++;

}

public int count()
public int id(int v)
private void dfs(Graph G, int v)

61

id[v] = id of component containing v

number of components

run DFS from one vertex in
each component

see next slide

63

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all

vertices discovered as part of the same component.

tinyG. txt

=
w
b

Cr®
& o

(® OO

Finding connected components with DFS (continued)

public int count()
{ return count; }

public int id(int v)
{ return id[v]; }

private void dfs(Graph G, int v)

{
marked[v] = true;
id[v] = count;

for (int w : G.adj(v))

if ('marked[w])
dfs (G, w);

NARARERWY
N

VMONOUOVWROUVOWO MO

number of components

id of component containing v

all vertices discovered in
same call of dfs have same id

62

64

Finding connected components with DFS (trace)

count

marked[]

id[]

012345678 9101112

012345678 9101112

dfs(0) o T 0
dfs(6) 0 T T 0 0
check 0
dfs(4) 0 T T T 0 0 0
dfs(5) 0o T TTT 0 000
dfs(3) 0o T TTTT 0 0000
check 5
check 4 0
3 done
check 4 ° e e
check 0
5 done 9 9 ®
check 6 e’o @\@
check 3
4 done
6 done
dfs(2) 0 T TTTTT 0 0000O0
check 0
2 done
dfs(1) O TTTTTTT 00000O00O0
check 0
1 done
check 5
0 done

Connected components application: study spread of STDs

P
T 7
L W //
i i: ﬂﬂy’/ ; \<
iy X ¢ Ve
~, o ¥ ¢ La L., T
SEEA NG e G A
el e adili S = IV Do @
*F).j \7‘; '\‘:(—-4"4 ’
T3 g NS
S~ e &
g~ G AN,
G S ara B o g g
‘ N

/
63
s oy @ Male
—— Female

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

65

67

Finding connected components with DFS (trace)

count marked[] id[]
3456 7 8 9101112 012 56 7 8 9101112
0 done
dfs(7) 1 TTTTTTTT 00000001
dfs(8) 1 TTTTTTTTT 000000011
check 7
8 done
7 done
dfs(9) 2 TTTTTTTTTT 0000000112
dfs(11) 2 TTTTTTTTTT T 0000000112 2
check 9
dfs(12) 2 TTTTTTTTTT TT 0000000112 22
check 11
check 9
12 done
11 done
dfs(10) 2 TTTTTTTTTTTTT 0000000112222
check 9
10 done
check 12 o
9 done D5 (6)
(3) 9
%) [N
O, Q)

66

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
* Vertex: pixel.

* Edge: between two adjacent pixels with grayscale value = 70.
* Blob: connected component of 20-30 pixels.

black =0
white = 255

Particle tracking. Track moving particles over time.

68

Graph-processing challenge 1

Problem. Is a graph bipartite?

(o)
How difficult?
* Any COS 126 student could do it. OO

* Need to be a typical diligent COS 226 student.)

* Hire an expert.
* Intractable.

» challenges * No one knows.

» Impossible.

69

Bipartiteness application Graph-processing challenge 2
) Problem. Find a cycle.
NI
L T /
i& i: 117y, \<
Sebr G kel K @
na . ¥ ‘/ g e :ﬁt. AN oS /
o SR, N ORONO
W o G i 2
:}'{ 1';5*}* AR How difficult?
¥] ik L) ‘Q’\:- e . e o
¢ A, 1 * Any COS 126 student could do it.
“x —_——
/ Y ; \< Y 7o * Need to be a typical diligent COS 226 student. O,
X .
" , e Hire an expert.
{ 3< \ YN vy ;
\\ / ’ + Intractable. @
\ Y > - * No one knows.
< * (oy B » Impossible. (1) (2) Vs

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of

adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.
71

& & DN OO oo

O WWo BN P

= &= NN O o o o
o UEeE WWwou DK

S & DN OO oo

o UEe WWo BN K

Graph-processing challenge 3 Bridges of Kénigsberg

Problem. Find a cycle that uses every edge. The Seven Bridges of Konigsberg. [Leonhard Euler 1736]
Assumption. Need to use each edge exactly once.

“...in Konigsberg in Prussia, there is an island A, called the

g:: Kneiphof; the river which surrounds it is divided into two branches ...
0-5 and these branches are crossed by seven bridges. Concerning these
. O= bridges, it was asked whether anyone could arrange a route in such a
How difficult? 1-2 _ "
2-3 way that he could cross each bridge once and only once.
* Any COS 126 student could do it. 2-4
* Need to be a typical diligent COS 226 student. ::;
* Hire an expert. 0-1-2-3-4-2-0-6-4-5-0 4-6 G
 Intractable. A =
* No one knows.
. B
* Impossible.
Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).
73
Graph-processing challenge 4 Graph-processing challenge 5
Problem. Find a cycle that visits every vertex. Problem. Are two graphs identical except for vertex names?

Assumption. Need to visit each vertex exactly once.

o\\
OmOn0
How difficult?

* Any COS 126 student could do it. 0}0

* Need to be a typical diligent COS 226 student.

How difficult?

* Any COS 126 student could do it. e}o

* Need to be a typical diligent COS 226 student.

S B W Wwo o oo
|
oL N

hhwleT'OOOO
oLt N KR

* Hire an expert. D=E=a=0=G-2-1=0 - * Hire an expert.

 Intractable. Intractable. e :
* No one knows. * No one knows. () =
* Impossible. » Impossible. (4)

U WwWwNKFHKHEF OOOo
| 1 |
o R B UL oy Ul

0<4, 1<3, 2<2, 3<6, 4<>5, 5<0, 6<1

75

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult? (3)
* Any COS 126 student could do it. '
+ Need to be a typical diligent COS 226 student. (5)
* Hire an expert.

Intractable. o
* No one knows.
* Impossible.

B S W Wwo o oo

o U oI R

