
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · October 10, 2011 8:25:03 PM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

3.1 SYMBOL TABLES

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

2

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

3

Symbol tables

Key-value pair abstraction.

• Insert a value with specified key.

• Given a key, search for the corresponding value.

Ex. DNS lookup.

• Insert URL with specified IP address.

• Given URL, find corresponding IP address.

key

URL IP address

www.cs.princeton.edu 128.112.136.11

www.princeton.edu 128.112.128.15

www.yale.edu 130.132.143.21

www.harvard.edu 128.103.060.55

www.simpsons.com 209.052.165.60

value

4

Symbol table applications

application purpose of search key value

dictionary find definition word definition

book index find relevant pages term list of page numbers

file share find song to download name of song computer ID

financial account process transactions account number transaction details

web search find relevant web pages keyword list of page names

compiler find properties of variables variable name type and value

routing table route Internet packets destination best route

DNS find IP address given URL URL IP address

reverse DNS find URL given IP address IP address URL

genomics find markers DNA string known positions

file system find file on disk filename location on disk

Associative array abstraction. Associate one value with each key.

5

Symbol table API

a[key] = val;

a[key]

API The symbol table is an abstract data type (see Chapter 1): It represents a well-
defined set values and operations on those values, enabling us to develop application-
programs (clients) and implementations separately. As usual, we precisely define the
operations by specifying an application programming interface (API) that provides the
contract between client and implementation:

public class ST<Key, Value>

ST() create a symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs in the table
Iterable<Key> keys() all the keys in the table

API for a generic basic symbol table

As we did with sorting, we will consider the methods without specifying the types of
the items being processed, using generics. For symbol tables, we emphasize the separate
roles played by keys and values in search by specifying the key and value types sepa-
rately instead of combining them in a single data type. After we have considered some
of the characteristics of this basic API, we will consider an extension for the typical case
when keys are Comparable, which enables numerous additional methods. We will then
consider implementations of each.

Before examining client code, we consider several design choices for our implemen-
tations to make our code consistent, compact, and useful. These are not difficult con-
ceptually, but worth examining because they anticipate the answers to questions that
would otherwise arise later.

Duplicate keys. We adopt the following conventions in all of our implementations:
!" Only one value is associated with each key (no duplicate keys in a table).
!" When a client puts a key-value pair into a table already containing that key (and

an associated value), the new value replaces the old one.

1953.1 ! Fundamentals

6

Conventions

• Values are not null.

• Method get() returns null if key not present.

• Method put() overwrites old value with new value.

Intended consequences.

• Easy to implement contains().

• Can implement lazy version of delete().

 public boolean contains(Key key)
 { return get(key) != null; }

 public void delete(Key key)
 { put(key, null); }

7

Keys and values

Value type. Any generic type.

Key type: several natural assumptions.

• Assume keys are Comparable, use compareTo().

• Assume keys are any generic type, use equals() to test equality.

• Assume keys are any generic type, use equals() to test equality;
use hashCode() to scramble key.

Best practices. Use immutable types for symbol table keys.

• Immutable in Java: String, Integer, Double, java.io.File, …

• Mutable in Java: StringBuilder, java.net.URL, arrays, ...

specify Comparable in API.

built-in to Java
(stay tuned)

8

Equality test

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:

• Reflexive: x.equals(x) is true.

• Symmetric: x.equals(y) iff y.equals(x).

• Transitive: if x.equals(y) and y.equals(z), then x.equals(z).

• Non-null: x.equals(null) is false.

Default implementation. (x == y)
Customized implementations. Integer, Double, String, File, URL, …
User-defined implementations. Some care needed.

do x and y refer to

the same object?

equivalence
relation

Seems easy.

public class Date implements Comparable<Date>
{
 private final int month;
 private final int day;
 private final int year;
 ...

 public boolean equals(Date that)
 {

 if (this.day != that.day) return false;
 if (this.month != that.month) return false;
 if (this.year != that.year) return false;
 return true;
 }
}

Implementing equals for user-defined types

9

check that all significant
fields are the same

Seems easy, but requires some care.

public final class Date implements Comparable<Date>
{
 private final int month;
 private final int day;
 private final int year;
 ...

 public boolean equals(Object y)
 {
 if (y == this) return true;

 if (y == null) return false;

 if (y.getClass() != this.getClass())
 return false;

 Date that = (Date) y;
 if (this.day != that.day) return false;
 if (this.month != that.month) return false;
 if (this.year != that.year) return false;
 return true;
 }
}

Implementing equals for user-defined types

10

check for null

optimize for true object equality

typically unsafe to use equals() with inheritance

(would violate symmetry)

must be Object.

Why? Experts still debate.

objects must be in the same class
(religion: getClass() vs. instanceof)

check that all significant
fields are the same

cast is guaranteed to succeed

11

Equals design

"Standard" recipe for user-defined types.

• Optimization for reference equality.

• Check against null.

• Check that two objects are of the same type and cast.

• Compare each significant field:

- if field is a primitive type, use ==

- if field is an object, use equals()
- if field is an array, apply to each entry

Best practices.

• Compare fields mostly likely to differ first.

• No need to use calculated fields that depend on other fields.

• Make compareTo() consistent with equals().

apply rule recursively

alternatively, use Arrays.equals(a, b)

or Arrays.deepEquals(a, b),

but not a.equals(b)

x.equals(y) if and only if (x.compareTo(y) == 0)

ST test client for traces

Build ST by associating value i with ith string from standard input.

12

public static void main(String[] args)
{
 ST<String, Integer> st = new ST<String, Integer>();
 for (int i = 0; !StdIn.isEmpty(); i++)
 {
 String key = StdIn.readString();
 st.put(key, i);
 }
 for (String s : st.keys())
 StdOut.println(s + " " + st.get(s));
}

output

keys

values
S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

output for
basic symbol table

(one possibility)

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

output for
ordered

symbol table

A 8
C 4
E 12
H 5
L 11
M 9
P 10
R 3
S 0
X 7

Keys, values, and output for test client

keys

values
S E A R C H E X A M P L E

0 1 2 3 4 5 6 7 8 9 10 11 12

output for
basic symbol table

(one possibility)

L 11
P 10
M 9
X 7
H 5
C 4
R 3
A 8
E 12
S 0

output for
ordered

symbol table

A 8
C 4
E 12
H 5
L 11
M 9
P 10
R 3
S 0
X 7

Keys, values, and output for test client

ST test client for analysis

Frequency counter. Read a sequence of strings from standard input
and print out one that occurs with highest frequency.

13

% more tinyTale.txt
it was the best of times
it was the worst of times
it was the age of wisdom
it was the age of foolishness
it was the epoch of belief
it was the epoch of incredulity
it was the season of light
it was the season of darkness
it was the spring of hope
it was the winter of despair

% java FrequencyCounter 1 < tinyTale.txt
it 10

% java FrequencyCounter 8 < tale.txt
business 122

% java FrequencyCounter 10 < leipzig1M.txt
government 24763

tiny example
(60 words, 20 distinct)

real example
(135,635 words, 10,769 distinct)

real example
(21,191,455 words, 534,580 distinct)

public class FrequencyCounter
{
 public static void main(String[] args)
 {
 int minlen = Integer.parseInt(args[0]);
 ST<String, Integer> st = new ST<String, Integer>();
 while (!StdIn.isEmpty())
 {
 String word = StdIn.readString();
 if (word.length() < minlen) continue;
 if (!st.contains(word)) st.put(word, 1);
 else st.put(word, st.get(word) + 1);
 }
 String max = "";
 st.put(max, 0);
 for (String word : st.keys())
 if (st.get(word) > st.get(max))
 max = word;
 StdOut.println(max + " " + st.get(max));
 }
}

14

Frequency counter implementation

read string and
update frequency

print a string
with max freq

create ST

ignore short strings

15

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

Data structure. Maintain an (unordered) linked list of key-value pairs.

Search. Scan through all keys until find a match.
Insert. Scan through all keys until find a match; if no match add to front.

16

Sequential search in a linked list

Trace of linked-list ST implementation for standard indexing client

red nodes
are new

black nodes
are accessed

in search

first

S 0

S 0E 1

S 0E 1A 2

S 0E 1A 2R 3

S 0E 1A 2R 3C 4

S 0E 1A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 2R 3C 4H 5

S 0E 6A 8R 3C 4H 5

X 7

X 7

M 9

P 10

L 11

L 11

circled entries are
changed values

gray nodes
are untouched

S 0E 6A 8R 3C 4H 5X 7

M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 6A 8R 3C 4H 5X 7

P 10 M 9 S 0E 12A 8R 3C 4H 5X 7

key value

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

A 8

M 9

P 10

L 11

E 12

Challenge. Efficient implementations of both search and insert.

17

Elementary ST implementations: summary

ST implementation
worst caseworst case average caseaverage case

ordered operations
ST implementation

search insert search hit insert
iteration? on keys

sequential search
(unordered list)

N N N / 2 N no equals()

18

‣ API
‣ sequential search
‣ binary search
‣ ordered symbol table ops

19

Binary search

Data structure. Maintain an ordered array of key-value pairs.

Rank helper function. How many keys < k ?

loop exits with lo > hi: return 7

entries in black
are a[lo..hi]

entry in red is a[m]

successful search for P

loop exits with keys[m] = P: return 6

lo hi m

unsuccessful search for Q

lo hi m

 keys[]
 0 1 2 3 4 5 6 7 8 9

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
6 6 6 A C E H L M P R S X

0 9 4 A C E H L M P R S X
5 9 7 A C E H L M P R S X
5 6 5 A C E H L M P R S X
7 6 6 A C E H L M P R S X

Trace of binary search for rank in an ordered array

20

Binary search: Java implementation

 public Value get(Key key)
 {
 if (isEmpty()) return null;
 int i = rank(key);
 if (i < N && keys[i].compareTo(key) == 0) return vals[i];
 else return null;
 }

 private int rank(Key key)
 {
 int lo = 0, hi = N-1;
 while (lo <= hi)
 {
 int mid = lo + (hi - lo) / 2;
 int cmp = key.compareTo(keys[mid]);
 if (cmp < 0) hi = mid - 1;
 else if (cmp > 0) lo = mid + 1;
 else if (cmp == 0) return mid;
 }
 return lo;
 }

number of keys < key

21

Binary search: mathematical analysis

Proposition. Binary search uses ~ lg N compares to search any array of size N.

Pf. T(N) ≡ number of compares to binary search in a sorted array of size N.
 ≤ T(⎣N / 2⎦) + 1

Recall lecture 2.

left or right half

Problem. To insert, need to shift all greater keys over.

22

Binary search: trace of standard indexing client

Trace of ordered-array ST implementation for standard indexing client

 keys[] vals[]
 0 1 2 3 4 5 6 7 8 9 N 0 1 2 3 4 5 6 7 8 9

 S 0 S 1 0
 E 1 E S 2 1 0
 A 2 A E S 3 2 1 0
 R 3 A E R S 4 2 1 3 0
 C 4 A C E R S 5 2 4 1 3 0
 H 5 A C E H R S 6 2 4 1 5 3 0
 E 6 A C E H R S 6 2 4 6 5 3 0
 X 7 A C E H R S X 7 2 4 6 5 3 0 7
 A 8 A C E H R S X 7 8 4 6 5 3 0 7
 M 9 A C E H M R S X 8 8 4 6 5 9 3 0 7
 P 10 A C E H M P R S X 9 8 4 6 5 9 10 3 0 7
 L 11 A C E H L M P R S X 10 8 4 6 5 11 9 10 3 0 7
 E 12 A C E H L M P R S X 10 8 4 12 5 11 9 10 3 0 7

 A C E H L M P R S X 8 4 12 5 11 9 10 3 0 7

entries in gray
did not move circled entries are

changed values

entries in black
moved to the rightentries in red

were inserted

key value

23

Elementary ST implementations: summary

Challenge. Efficient implementations of both search and insert.

ST implementation
worst caseworst case average caseaverage case

ordered operations
ST implementation

search insert search hit insert
iteration? on keys

sequential search
(unordered list)

N N N / 2 N no equals()

binary search
(ordered array)

 log N N log N N / 2 yes compareTo()

24

‣ API
‣ sequential search
‣ binary search
‣ ordered operations

25

Ordered symbol table API

09:00:00 Chicago
09:00:03 Phoenix
09:00:13 Houston
09:00:59 Chicago
09:01:10 Houston
09:03:13 Chicago
09:10:11 Seattle
09:10:25 Seattle
09:14:25 Phoenix
09:19:32 Chicago
09:19:46 Chicago
09:21:05 Chicago
09:22:43 Seattle
09:22:54 Seattle
09:25:52 Chicago
09:35:21 Chicago
09:36:14 Seattle
09:37:44 Phoenix

keys values

get(09:00:13)

ceiling(09:30:00)

keys(09:15:00, 09:25:00)

size(09:15:00, 09:25:00) is 5
rank(09:10:25) is 7

floor(09:05:00)

min()

select(7)

max()

Examples of ordered symbol-table operations

Ordered symbol tables In typical applications, keys are Comparable objects, so
the option exists of using the code a.compareTo(b) to compare two keys a and b.
Several symbol-table implementations take advantage of order among the keys that is
implied by Comparable to provide efficient implementations of the put() and get()
operations. More important, in such implementations, we can think of the symbol ta-
ble as keeping the keys in order and consider a significantly expanded API that defines
numerous natural and useful operations involving relative key order. For example, sup-
pose that your keys are times of the day. You might be interested in knowing the earliest
or the latest time, the set of keys that fall between two given times, and so forth. In most
cases, such operations are not difficult to implement with the same data structures and
methods underlying the put() and get() implementations. Specifically, for applica-
tions where keys are Comparable, we implement in this chapter the following API:

 public class ST<Key extends Comparable<Key>, Value>

ST() create an ordered symbol table

void put(Key key, Value val)
put key-value pair into the table
(remove key from table if value is null)

Value get(Key key)
value paired with key
(null if key is absent)

void delete(Key key) remove key (and its value) from table
boolean contains(Key key) is there a value paired with key?
boolean isEmpty() is the table empty?

int size() number of key-value pairs
Key min() smallest key
Key max() largest key
Key floor(Key key) largest key less than or equal to key
Key ceiling(Key key) smallest key greater than or equal to key
int rank(Key key) number of keys less than key
Key select(int k) key of rank k
void deleteMin() delete smallest key
void deleteMax() delete largest key
int size(Key lo, Key hi) number of keys in [lo..hi]

Iterable<Key> keys(Key lo, Key hi) keys in [lo..hi], in sorted order
Iterable<Key> keys() all keys in the table, in sorted order

API for a generic ordered symbol table

366 CHAPTER 3 � Searching

26

Ordered symbol table API

27

Binary search: ordered symbol table operations summary

sequential
search

binary
search

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N

1 N

N 1

N lg N

N lg N

N 1

N log N N

order of growth of the running time for ordered symbol table operations

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · October 10, 2011 8:25:35 PM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

3.2 BINARY SEARCH TREES

‣ BSTs
‣ ordered operations
‣ deletion

2

‣ BSTs
‣ ordered operations
‣ deletion

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

• Empty.

• Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,
and every node’s key is:

• Larger than all keys in its left subtree.

• Smaller than all keys in its right subtree.

3

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:

• A Key and a Value.

• A reference to the left and right subtree.

4

BST representation in Java

smaller keys larger keys

private class Node
{
 private Key key;
 private Value val;
 private Node left, right;
 public Node(Key key, Value val)
 {
 this.key = key;
 this.val = val;
 }
}

Key and Value are generic types; Key is Comparable

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

public class BST<Key extends Comparable<Key>, Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(Key key, Value val)
 { /* see next slides */ }

 public Value get(Key key)
 { /* see next slides */ }

 public void delete(Key key)
 { /* see next slides */ }

 public Iterable<Key> iterator()
 { /* see next slides */ }

}

5

BST implementation (skeleton)

root of BST

6

BST search and insert demo

Get. Return value corresponding to given key, or null if no such key.

7

BST search

R is less than S
so look to the left

black nodes could
match the search key

gray nodes cannot
match the search key

found R
(search hit)

so return value

R is greater than E
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

T is less than X
so look to the left

link is null
so T is not in tree

(search miss)

T is greater than S
so look to the right

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Successful (left) and unsuccessful (right) search in a BST

successful search for R unsuccessful search for T

Get. Return value corresponding to given key, or null if no such key.

Cost. Number of compares is equal to 1 + depth of node.
8

BST search: Java implementation

 public Value get(Key key)
 {
 Node x = root;
 while (x != null)
 {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else if (cmp == 0) return x.val;
 }
 return null;
 }

Put. Associate value with key.

Search for key, then two cases:

• Key in tree ⇒ reset value.

• Key not in tree ⇒ add new node.

9

BST insert

search for L ends
at this null link

reset links
on the way up

create new node

A
C

E

H
M

P

R

S
X

A
C

E

H

L

M
P

R

S
X

A
C

E

H

L
M

P

R

S
X

Insertion into a BST

inserting L

Put. Associate value with key.

Cost. Number of compares is equal to 1 + depth of node.
10

BST insert: Java implementation

 public void put(Key key, Value val)
 { root = put(root, key, val); }

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = put(x.left, key, val);
 else if (cmp > 0)
 x.right = put(x.right, key, val);
 else if (cmp == 0)
 x.val = val;
 return x;
 }

concise, but tricky,
recursive code;
read carefully!

11

BST trace: standard indexing client

S

A
C

E

H
R

S
X

A
C

E

H
R

S

A
C

E

H
R

S

A
C

E
R

S

A
E

R

A
E

S

S

E
S

S

6

S 0

E 1

A 2

R 3

C 4

H 5

E 6

X 7

red nodes
are new

black nodes
are accessed

in search

changed
value

changed
value

changed
value

gray nodes
are untouched

A
C

E

H
M

P

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
R

S
X

A
C

E

H

L
M

P

R

S
X

A
C

E

H

L
M

P

R

S
X12

8

A 8

M 9

P 10

L 11

E 12

BST trace for standard indexing client

key value key value

• Many BSTs correspond to same set of keys.

• Number of compares for search/insert is equal to 1 + depth of node.

Remark. Tree shape depends on order of insertion.

12

Tree shape

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

A

H

S
R

X

C
E

X
S

R
C

E

H

A

A
C

E

H
R

S
X

BST possibilities

best case

typical case

worst case

Observation. If keys inserted in random order, tree stays relatively flat.

13

BST insertion: random order

14

BST insertion: random order visualization

Ex. Insert keys in random order.

Remark. Correspondence is 1-1 if array has no duplicate keys.
15

Correspondence between BSTs and quicksort partitioning

A

C

E

I

K

L

M

O

P

Q

R

S

T

U

UE

16

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of
compares for a search/insert is ~ 2 ln N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of tree is ~ 4.311 ln N.

But… Worst-case height is N.
(exponentially small chance when keys are inserted in random order)

17

ST implementations: summary

implementation

guaranteeguarantee average caseaverage case
ordered

ops?
operations

on keys
implementation

search insert search hit insert
ops? on keys

sequential search
(unordered list)

N N N/2 N no equals()

binary search
(ordered array)

lg N N lg N N/2 yes compareTo()

BST N N 1.39 lg N 1.39 lg N ? compareTo()

18

‣ BSTs
‣ ordered operations
‣ deletion

Minimum. Smallest key in table.
Maximum. Largest key in table.

Q. How to find the min / max?

Minimum and maximum

19

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()max

min

Floor. Largest key ≤ to a given key.
Ceiling. Smallest key ≥ to a given key.

Q. How to find the floor /ceiling?

Floor and ceiling

20

Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()

floor(D)

ceiling(Q)

floor(G)

Case 1. [k equals the key at root]
The floor of k is k.

Case 2. [k is less than the key at root]
The floor of k is in the left subtree.

Case 3. [k is greater than the key at root]
The floor of k is in the right subtree
(if there is any key ≤ k in right subtree);
otherwise it is the key in the root.

Computing the floor

21

floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

Computing the floor

22

public Key floor(Key key)
{
 Node x = floor(root, key);
 if (x == null) return null;
 return x.key;
}
private Node floor(Node x, Key key)
{
 if (x == null) return null;
 int cmp = key.compareTo(x.key);

 if (cmp == 0) return x;

 if (cmp < 0) return floor(x.left, key);

 Node t = floor(x.right, key);
 if (t != null) return t;
 else return x;

} floor(G)in left
subtree is null

result

!nding floor(G)

G is greater than E so
floor(G) could be

on the right

G is less than S so
floor(G) must be

on the left

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

Computing the "oor function

In each node, we store the number of nodes in the subtree rooted at that node.
To implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().
23

Subtree counts

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

 public int size()
 { return size(root); }

 private int size(Node x)
 {
 if (x == null) return 0;
 return x.N;
 }

24

BST implementation: subtree counts

private class Node
{
 private Key key;
 private Value val;
 private Node left;
 private Node right;
 private int N;
}

 private Node put(Node x, Key key, Value val)
 {
 if (x == null) return new Node(key, val);
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = put(x.left, key, val);
 else if (cmp > 0) x.right = put(x.right, key, val);
 else if (cmp == 0) x.val = val;
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

number of nodes
in subtree

25

Rank

Rank. How many keys < k ?

Easy recursive algorithm (4 cases!)

public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
 if (x == null) return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) return rank(key, x.left);
 else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
 else if (cmp == 0) return size(x.left);
}

A

A C E H M R S X

C

E

H
M

R

S
X

A

A C E H M R S X

C
E

H
M

R

S
X

2

6

5

8

8

1

1

1

1

1 1

3

2

22

2

node count N

Two BSTs that represent
the same set of keys

Select. Key of given rank.

Selection

26

public Key select(int k)
{
 if (k < 0) return null;
 if (k >= size()) return null;
 Node x = select(root, k);
 return x.key;
}

private Node select(Node x, int k)
{
 if (x == null) return null;
 int t = size(x.left);
 if (t > k)
 return select(x.left, k);
 else if (t < k)
 return select(x.right, k-t-1);
 else if (t == k)
 return x;
}

8 keys in left subtree
so search for key of
rank 3 on the left

count N
8

2 keys in left subtree so
search for key of rank

3-2-1 = 0 on the right

2

0 keys in left subtree
and searching for

key of rank 0
so return H

2 keys in left subtree
so search for key of
rank 0 on the left

2

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

!nding select(3)
the key of rank 3

Selection in a BST

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal

27

public Iterable<Key> keys()
{
 Queue<Key> q = new Queue<Key>();
 inorder(root, q);
 return q;
}

private void inorder(Node x, Queue<Key> q)
{
 if (x == null) return;
 inorder(x.left, q);
 q.enqueue(x.key);
 inorder(x.right, q);
}

• Traverse left subtree.

• Enqueue key.

• Traverse right subtree.

Inorder traversal

28

function call stack

inorder(S)
 inorder(E)
 inorder(A)
 enqueue A
 inorder(C)
 enqueue C
 enqueue E
 inorder(R)
 inorder(H)
 enqueue H
 inorder(M)
 enqueue M
 enqueue R
 enqueue S
 inorder(X)
 enqueue X

 A

 C
 E

 H

 M
 R
 S

 X

S
S E
S E A

S E A C

S E R
S E R H

S E R H M

S X

queuerecursive calls

A

A C E H M R S X

C

E

H
M

R

S
X

29

BST: ordered symbol table operations summary

sequential
search

binary
search

BST

search

insert

min / max

floor / ceiling

rank

select

ordered iteration

N lg N h

1 N h

N 1 h

N lg N h

N lg N h

N 1 h

N log N N N

h = height of BST
(proportional to log N

if keys inserted in random order)

worst-case running time of ordered symbol table operations

30

‣ BSTs
‣ ordered operations
‣ deletion

31

ST implementations: summary

Next. Deletion in BSTs.

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? ? ? yes compareTo()

To remove a node with a given key:

• Set its value to null.

• Leave key in tree to guide searches (but don't consider it equal to search key).

Cost. ~ 2 ln N' per insert, search, and delete (if keys in random order),
where N' is the number of key-value pairs ever inserted in the BST.

Unsatisfactory solution. Tombstone overload.
32

BST deletion: lazy approach

delete I

S

E

C

A

N

RH

I

S

E

C

A

N

RH

☠ tombstone

To delete the minimum key:

• Go left until finding a node with a null left link.

• Replace that node by its right link.

• Update subtree counts.

33

Deleting the minimum

 public void deleteMin()
 { root = deleteMin(root); }

 private Node deleteMin(Node x)
 {
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.N = 1 + size(x.left) + size(x.right);
 return x;
 }

go left until
reaching null

left link

return that
node’s right link

available for
garbage collection

5

7

update links and node counts
after recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

C
E

H
M

R

S
X

Deleting the minimum in a BST

node to delete

replace with
null link

available for
garbage

collection

update counts after
recursive calls

5

1

7

A
C

E

H
M

C

R

S
X

A
E

H
M

R

S
X

A
E

H
M

R

S
X

deleting C

To delete a node with key k: search for node t containing key k.

Case 0. [0 children] Delete t by setting parent link to null.

34

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 1. [1 child] Delete t by replacing parent link.

35

Hibbard deletion

node to delete
replace with

child link available for
garbage

collection

A
C C C

E

H
M

R

R

S
X

A
E

H
M

S
X

A
E

H
M

S
X

deleting R
update counts after

recursive calls

5

7

To delete a node with key k: search for node t containing key k.

Case 2. [2 children]

• Find successor x of t.

• Delete the minimum in t's right subtree.

• Put x in t's spot.

36

Hibbard deletion

x has no left child

but don't garbage collect x

still a BST

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

search for key E

node to delete

deleteMin(t.right)

t

5

7

x

successor
 min(t.right)

t.left

x

update links and
node counts after

recursive calls

A
C

E

H
M

R

S
X

A
C

E

H
M

R

S
X

A
C

H

A
C

H

M
R

M
R

S
X

E
S

X

deleting E

Deletion in a BST

go right, then
go left until

reaching null
left link

37

Hibbard deletion: Java implementation

 public void delete(Key key)
 { root = delete(root, key); }

 private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x.left = delete(x.left, key);
 else if (cmp > 0) x.right = delete(x.right, key);
 else {
 if (x.right == null) return x.left;

 Node t = x;
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.N = size(x.left) + size(x.right) + 1;
 return x;
 }

no right child

replace with
successor

search for key

update subtree
counts

38

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

Surprising consequence. Trees not random (!) ⇒ sqrt (N) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

Next lecture. Guarantee logarithmic performance for all operations.
39

ST implementations: summary

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N √N yes compareTo()

other operations also become √N
if deletions allowed

