
NAME: login ID:
precept:

COS 226 Midterm Exam, Spring 2009

This test is 10 questions, weighted as indicated. The exam is closed book, except that you are
allowed to use a one page cheatsheet. No calculators or other electronic devices are permitted.
Give your answers and show your work in the space provided. Put your name, login ID, and
precept number on this page (now), and write out and sign the Honor Code pledge before turning
in the test. You have 80 minutes to complete the test.

"I pledge my honor that I have not violated the Honor Code during this examination."

1 /5

2 /5

3 /5

4 /10

5 /10

6 /10

7 /10

8 /10

9 /20

10 /15

TOTAL /100

March 9, 2009

1. Partitioning (5 points). Give the result of partitioning the array with standard Quicksort
partitioning (taking the N at the left as the partitioning element).

N E W P A R T I T I O N Q U E S T I O N

2. Estimating running time (5 points). Suppose that you run the program below
(brute-force solution to the 4-sum problem) for N = 1000 and observe that it takes 1000
seconds. Predict its running time (in seconds) for N = 10000 and give a formula that
estimates the running time as a function of N.

int brute(int a[], int N)
{
 int i, j, k, m;
 for (i = 0; i < N; i++)
 for (j = i+1; j < N; j++)
 for (k = j+1; k < N; k++)
 for (m = k+1; m < N; m++)
 if (a[i] + a[j] + a[k] + a[m] == 0) return 1;
 return 0;
}

Predicted running time (in seconds) for N = 10000: _________________

Estimated running time (in seconds) as a function of N: __________________

2

3. Union-find trees (5 points). Circle the letters corresponding to arrays that could not
possibly occur during the execution of weighted quick union with path compression:

 i : 0 1 2 3 4 5 6 7 8 9

A. a[i]: 0 1 2 3 4 5 6 7 8 9

B. a[i]: 7 3 8 3 4 5 6 8 8 1

C. a[i]: 6 3 8 0 4 5 6 9 8 1

D. a[i]: 0 0 0 0 0 0 0 0 0 0

E. a[i]: 9 6 2 6 1 4 5 8 8 9

F. a[i]: 9 8 7 6 5 4 3 2 1 0

4. Sorting algorithms (10 points). Match each of the sorting algorithms below with its
primary distinguishing characteristic (as presented in lecture and in the book) by writing
the letter corresponding to each algorithm in the blank to the left of the corresponding
characteristic. You should use each letter once and only once.

A. Mergesort _____ Adapts well to duplicates

B. Quicksort _____ Optimal time and space

C. Shellsort _____ Adapts well to order

D. Insertion sort _____ Not analyzed

E. Selection sort _____ Stable and fast

F. 3-way quicksort _____ Optimal data movement

G. Heapsort _____ Fastest general-purpose sort

3

5. Dynamic arrays (10 points). The following list gives possible choices for using a dynamic
array in a pushdown stack implementation. Write linear or quadratic in the blank
following each choice to best describe the total time required in the worst case for a
sequence of push() and pop() operations.

A. push(): always grow array by 1
pop(): always shrink array by 1 ________________

B. push(): double array if it is full
pop(): never shrink array ________________

C. push(): double array if it is full
pop(): halve array if it is half full ________________

D. push(): double array if it is full
pop(): halve array if it is 1/3 full ________________

E. push(): double array if it is full
pop(): shrink array by 99 if it has 100 empty slots ________________

6. LLRB insertion (10 points). The following diagram shows a left-leaning red-black tree
just after the node containing A is attached at the bottom. Thick lines are red links. Show
the tree that results when this insertion is completed.

4

7. ST implementations (10 points). The following is a list of possible reasons for choosing
one of the Java ST implementations given in lecture over another. In the blanks provided,
first list the ones that might reasonably justify using red-black trees rather than hash
tables, then list the ones that might reasonably justify using hash tables over red-black
trees. You need not use all the choices (do not list a choice if there are reasonable
arguments on both sides).

A. Easier to use properly for built-in key types (such as String and Integer)

B. Easier to use properly for user-defined key types

C. Extends to handle useful operations for ordered keys

D. Uses less space

E. Better worst-case performance guarantee

F. Faster for int keys

Reasons to use red-black trees: ________________________

Reasons to use hash tables: ________________________

8. Red-black tree invariants (10 points). The following is a list of various descriptions of
possible states of nodes in a red-black 2-3 tree. Circle the ones that cannot be found in a
tree built by a sequence of put() operations. Recall that the color of a node is the color
of the link to its parent, and that the root is always black.

A. Red node with red parent and two black children.

B. Black node with two null children.

C. Red node with two null children.

D. Black node with a left child described by C. and right child described by B.

E. Red node with black parent and black children.

F. Black node with red parent and one red child and one null child.

G. More red nodes than black nodes.

5

9. 7 sorting algorithms (20 points). The leftmost column is the original input of strings to
be sorted, and the rightmost column is the sorted result. The other columns are the
contents at some intermediate step during one of the 7 sorting algorithms listed below.
Match up each algorithm by writing its letter under the corresponding column. Use each
letter exactly once.

that been also also into been year been also
even even down back even even with even back
than ever come been than from will than been
been fell been come been more more that come
from from back down from next were from down
next loss even even next over plea next even
show more ever ever show plea well show ever
with next into fell jobs show lost with fell
more over fell from more than even more from
were plea from have much that some over have
over show jobs into over were very plea into
plea than next jobs plea with next were jobs
fell that have with fell fell lead ever lead
time time lead time back time time fell loss
loss were loss loss loss loss that loss lost
ever with over show ever ever jobs time more
lost also lost lost lost lost been also much
also come more that also also also down next
down down much more down down down lost over
said have show said said said said said plea
some lost plea some some some from come said
have said that were have have have have show
very some said very lead very over some some
come very some than come come come very than
into back will over that into into back that
lead into very lead very lead fell into time
back jobs time next time back back lead very
year lead than year year year than year well
will much with will will will show jobs were
well well well well well well loss much will
much will were much were much much well with

jobs year year plea with jobs ever will year

 ____ ____ ____ ____ ____ ____ ____

A. Bottom-up mergesort
B. Shellsort
C. Insertion sort
D. Quicksort (with no random shuffle)
E. Selection sort
F. Top-down mergesort
G. Heapsort

6

10. Dynamic median-finding (15 points). You need to support a client that reads a huge a
stream of numbers that are all different and needs to keep track of the median element in
the entire stream seen so far. For example, if the client gives you the numbers 2 9 7 4
1 and then asks for the median, you must return 4, and if the client then adds the
numbers 6 8 5 and again asks for the median, you must return 5 or 6. There are three
requirements: First, you have only constant extra space (beyond what is needed to store
the numbers themselves). Second, you must return the median in constant time. Third,
you must process the Nth element in time proportional to log N.

Is it possible to discard some portion of the input, such that your algorithm finds the
median element accurately even in the future?

A. Yes
B. No

Assume that you have seen N numbers and know that the median is of those numbers is v.
Which of the following is true of the median when you process the (N+1)st number?

A. It does not change.
B. It is the largest of the numbers smaller than v.
C. It is the smallest of the numbers larger than v.
D. Either A. or B. or C.
E. Either B. or C, but not A.
F. It could be any of the numbers seen so far.

Which of the following data structures can support inserting numbers in logarithmic time
and returning the maximum in constant time, using only a constant amount of extra
space (beyond what is needed to store the numbers)?

A. BST.
B. Red-black BST.
C. Binary heap.
D. Sorted array.
E. Linked list.

In one or two sentences, describe how you would solve the problem.

7

