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COS 226 Algorithms and Data Structures Fall 2011

Midterm Solutions

1. Union find.

(a) Impossible: has a cycle 0-1, 1-2, 2-3, and 3-0 in the parent-link representation.

(b) Impossible: the nodes 1, 2, 3, 4, and 5 must link to 0 when 0 is a root; hence, 0 would
not link to 9 because 0 is the root of the larger tree.

(c) Impossible: tree rooted at 0 has height 9 > lg 10.

(d) Possible: 8-5, 6-1, 7-1, 5-1, 9-2, 3-0, 4-0, 2-0, 1-0.

(e) Impossible: tree rooted at 0 has height 4 > lg 10.

(f) Impossible: tree rooted at 0 has height 3 > lg 7.

2. Analysis of algorithms.

T (N) = 1
100,000N5/3.

When N increases by a factor of 8, the running time increases by a factor of 32. Thus,
T (N) = aN b, where b = log8 32 = lg 32/ lg 8 = 5/3. Since T (1000) = 1.00, we have 1.00 =
a× 10005/3, which implies a = 1

100000 .

3. Data structures.

(a) 40 + 48N bytes.

• A Node uses 48 bytes of memory (16 bytes object overhead + 8 bytes inner class
overhead + 8 bytes for Item reference 16 bytes for two Node references).

• A LinkedList with N items uses 40 bytes (16 bytes object overhead + 16 bytes for
two Node references + 4 bytes for an integer + 4 bytes of padding) plus the memory
for the N nodes.

(b)

addFirst(item) prepend the item to the beginning of the list 1

get(i) return the item at position i in the list N

set(i, item) replace position i in the list with the item N

removeLast() delete and return the item at the end of the list 1

contains(item) is the item in the list? N

4. 8 sorting and shuffling algorithms.

0 5 6 9 4 3 8 2 7 1
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5. Binary heaps.

(a)
0 1 2 3 4 5 6 7 8 9 10 11 12
- Y X H G T C A F B Q R -

(b)
0 1 2 3 4 5 6 7 8 9 10 11 12
- Y X *P G T *H A F B Q R *C

(c) H I J K L M N

Key is ≤ N because it is a child of N in original heap and ≥ H because it is a parent of H
in final heap.

6. Red-black BSTs.

(a) T U V

Key is < W because it is in left subtree of W and > S because it is in right subtree of S.

(b)
B link between W and S

A link between ? and W

A link between S and Y

B link between Q and S

A. red

B. black

C. either red or black

(c)
H D B J

rotateLeft() 1 0 1 2
rotateRight() 0 0 0 3
flipColors() 0 0 0 3

7. Comparing two arrays of points.

(a) Sort the two arrays a[] and b[], using the point’s natural order (say, compare by y-
coordinate, breaking ties by x-coordinate). Scan through the two sorted arrays and
check that a[i] equals b[i] for each index i (using the point’s natural order). We can
achieve the performance requirements by using heapsort to sort.

(b) For each point in a[], add a[i] to a set. For each point in b[] check that b[i] is in
the set. We can achieve the performance requirements by using a hash table (either
linear probing or separate chaining) to implement the set data type and by making the
uniform hashing assumption.
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8. Stabbing count queries.

The key observation is that the number of intervals containing x is equal to the number of
intervals with a left endpoint less than x (number of intervals that start before x) minus the
number of intervals with a right endpoint less than x (number of intervals that end before x).
To keep track of these quantities, we build two BSTs, one containing the left endpoints as
keys and one containing the right endpoints as keys. Recall that the rank() methods returns
the the number of keys in a BST less than a given quantity. We can achieve the performance
requirements by using a red-black BST for the BST.

For reference, here is a complete Java implementation:

public class IntervalStab {
private RedBlackSET<Double> left, right;

public IntervalStab() {
left = new RedBlackSET<Double>();
right = new RedBlackSET<Double>();

}
public void insert(double xmin, double xmax) {

left.add(xmin);
right.add(xmax);

}
public int count(double x) {

return left.rank(x) - right.rank(x);
}

}


