COS 226 Algorithms and Data Structures Fall 2009

Midterm Solutions

1. 8 sorting algorithms. 0352648791

2. Analysis of algorithms.

(a) Tand IT only. IIT is a true statement, but tilde notation also suppresses lower order terms
so it is not a reason why tilde notation is more precise.

(b) ~ 1072N3 seconds

3. Binary heaps.

4. Red-black trees.

(a)
inserting Z

@ inserting P
C 2 CEDC

QL Jmy (S]
o R0 60009@

(b) 2 left rotation (one while inserting Z, one while inserting P), 1 right rotations (while
inserting P), 2 color flips (while inserting P).



5. Hashing.
I only.

e I results from inserting the keys in the order BD F A C E G.

e II cannot result. The first key inserted will end up in the table entry corresponding to
its hash value. But no key has this property.

e [IT cannot result. Both A and F end up in the table entry corresponding to their hash
values, so we can assume they were inserted first and second. So, the third key inserted
will also end up in the table entry corresponding to its hash value. But no keys (beside
A and F) have this property.

6. Data structures.

(a) N%. Deleting the ith element takes linear time in the worst case (and average case). In
this example, the size of the array decreases from N2 to 0.

(b) A randomized queue supports deleting a random element in constant (amortized) time.

(c) N2. Starting from an empty randomized queue (as implemented in Assignment 2), any
sequence of 2N? operations takes time proportional to 2/N? in the worst case.

7. Generalized queue.

(a) Create a BST where the keys are integers and the values are the generic items such that
the ith value in the queue is associated with the ith largest key in the BST. That is, an
inorder traversal of the BST yields the items in the queue in order.

(b) To implement get(i): return the value corresponding to the ith largest key. The ith
largest key is select(i).
(¢) To implement addFirst() and addLast (), we will maintain two instance variables 1o
and hi, which we initialize to 0.
e To implement addFirst(item), associate the new item with the key 1o - 1 and
decrement lo. Thus, the new item has the smallest key.
e To implement addLast(item), associate the new item with the key hi + 1 and
increment hi. Thus, the new item has the largest key.

(d) To implement remove (i), delete the ith largest key and its associated value from the
symbol table. The ith largest key is select(i).



If we use a red-black tree for the BST, all operations take logarithmic time in the worst case.
Here’s a complete Java implementation.

public class GeneralizedQueue<Item> {

private RedBlackBST<Long, Item> st = new RedBlackBST<Long, Item>();
private long lo = 0, hi = 0;

public Item get(int i) { return st.get(st.select(i)); }
public void delete(int i) { st.delete(st.select(i)); }
public void addFront(Item item) { st.put(--lo, item); }
public void addLast(Item item) { st.put(++hi, item); }



