COS 226	Algorithms and Data Structures	Fall 2008
Final Solutions		

1. Depth-first search.
(a) A B C F E G D H
(b) E D G F H C B A
(c) false, true, true
2. Minimum spanning tree.
$\begin{array}{llllllllll}\text { (a) } & 1 & 2 & 3 & 4 & 5 & 11 & 12 & 13 & 17\end{array}$
(b) $4 \begin{array}{lllllllll}3 & 2 & 1 & 5 & 13 & 12 & 17 & 11\end{array}$
3. Convex hull.
(a) B C D G H F J I E
(b) 1. $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$
4. $A \rightarrow B \rightarrow C H D$
5. $A \rightarrow B \rightarrow G$
6. $A \rightarrow B \rightarrow H$
7. $A \rightarrow B \rightarrow H \rightarrow F$
8. A -> B $\rightarrow \mathrm{H}$-> F $->\mathrm{J}$
9. A -> B -> H -> F -> J -> I
10. A \rightarrow B \rightarrow H \rightarrow E
11. TST.
(a) aaa $a a b a b$ ba bb bba bbbb
(b)

12. 2D tree.

6. Radix sorting.

Put an X in each box if the string sorting algorithm (the standard version considered in class) has the corresponding property.

	mergesort	LSD radix sort	MSD radix sort	3-way radix quicksort
stable	X	X	X	
in-place				X
sublinear time (in best case)	X	X	X	X
fixed-length strings only				

Note that in the best case, mergesort takes $N \log N$ string compares, but a string compare can takes constant time (if the two strings differ after a constant number of characters). Thus, the overall running time can be sublinear in the input size (total number of characters in the N strings).

7. Data compression.

$a b a b b a b a b b a b b a b$

8. Regular expressions.

cd

9. 1D nearest neighbor.

- constructor: create an empty red-black tree.
- $\operatorname{insert}(x):$ insert x into the red-black tree.
- query (y): if the data structure is empty return null; otherwise compute the floor and ceiling of y and return the (non-null) value closest to x.

10. Prefix-free codes.

(a) Insert all of the codewords into a binary trie, marking the terminating nodes. The set of string is not prefix-free if when inserting a codeword (i) you pass through a marked node (an existing codeword is a prefix of the codeword you are inserting) or (ii) the node you mark is not a leaf node (the codeword you're inserting is a prefix of an existing codeword).
(b) W (we go down one level in the tree for each bit we examine).
(c) W (at most one trie node for each bit in the input).

Alternate solution 1: use a TST instead of a binary trie. Since the radix size is 2 , the running time will still be linear: you at most double the length of a search path for a codeword.
Alternate solution 2: sort all of the codewords (MSD radix sort or 3-way radix quicksort) and check adjacent codewords to see if one is a prefix of the other.

11. Shortest directed cycle.

(a) The critical observation is that the shortest directed cycle is a shortest path (number of edges) from s to v, plus a single edge $v \rightarrow s$.

```
For each vertex s:
    * Use BFS to compute shortest path from s to each other vertex.
    * For each edge v->s entering s, consider cycle formed by
        shortest path from s to v (if the path exists) plus the edge v->s.
Return shortest overall cycle.
```

(b) The running time is $O(E V)$.

The single-source shortest path computation from s takes $O(E+V)$ time per using BFS. Finding all edges entering s takes $O(E+V)$ time by scanning all edges (though a better way is to compute the reverse graph at once and access the adjacency lists). We must do this for each vertex s. Thus, the overall running time is $O(E V)$.
(c) The memory usage is $O(E+V)$.

BFS uses $O(V)$ extra memory and we only need to run one at a time. (A less efficient solution is to compute a V-by- V table containing the shortest path from v to w for every v and w. This uses $O\left(V^{2}\right)$ memory.)

12. Reductions.

(a) $0, x_{1}, x_{2}, \ldots, x_{N}$.

This is the easy direction-we just choose $b=0$.
(b) $3 x_{1}-b, 3 x_{2}-b, \ldots, 3 x_{N}-b$.

Observe that $\left(3 x_{i}-b\right)+\left(3 x_{j}-b\right)+\left(3 x_{k}-b\right)=0$ if and only if $x_{i}+x_{j}+x_{k}=b$. Note that we use $3 x_{i}-b$ as the input instead of $x_{i}-b / 3$ because the input must be integral.
(c) I, II, and III.

