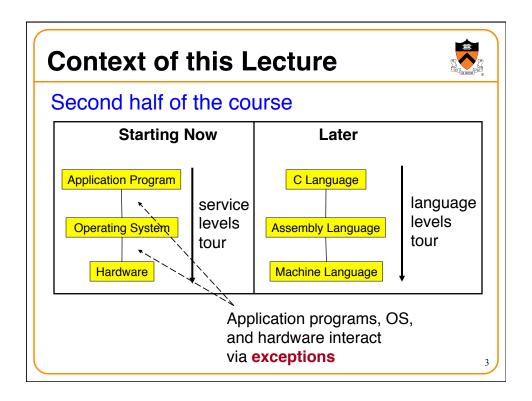


Exceptions and Processes

The material for this lecture is drawn from Computer Systems: A Programmer's Perspective (Bryant & O' Hallaron) Chapter 8


1

Goals of this Lecture

- Help you learn about:
 - Exceptions
 - The **process** concept
 - ... and thereby...
 - How operating systems work
 - How application programs interact with operating systems and hardware

The **process** concept is one of the most important concepts in systems programming

Context of this Lecture (cont.)

- · More precisely...
- First (now):
 - · Service levels tour
 - · Exceptions and processes
 - · Memory management
- Then:
 - · Language levels tour
 - · Assembly language
 - · Machine language
 - · Assemblers and linkers
- · And then:
 - · Service levels tour (continued)
 - · Process management, I/O management, signals

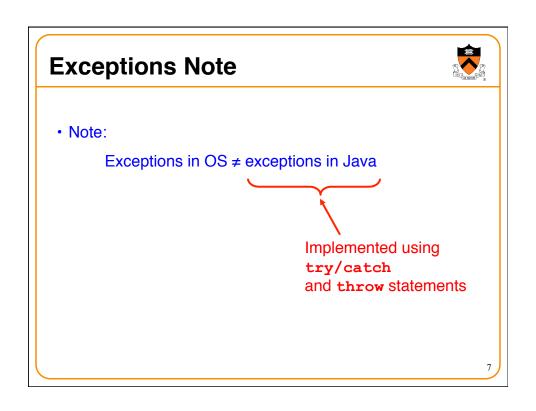
Motivation

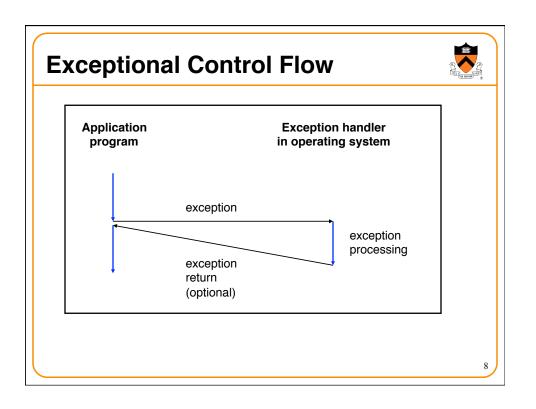
Question:

- Executing program thinks it has exclusive control of CPU
- But multiple executing programs must share CPU(s)
- How is that illusion implemented?

Question:

- Executing program thinks it has exclusive use of all of memory
- But multiple executing programs must share one memory
- · How is that illusion implemented?

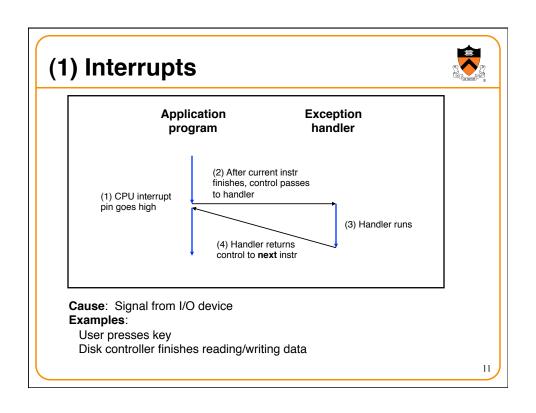

Answer: Exceptions and Processes

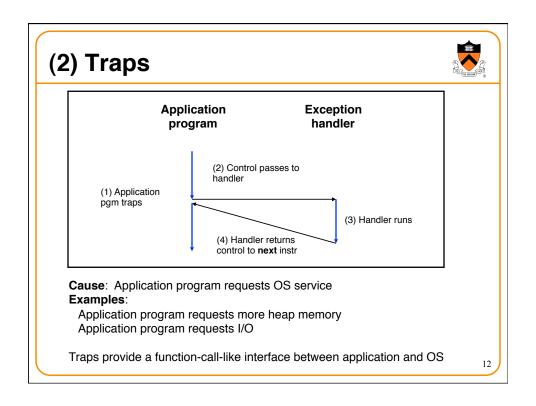

5

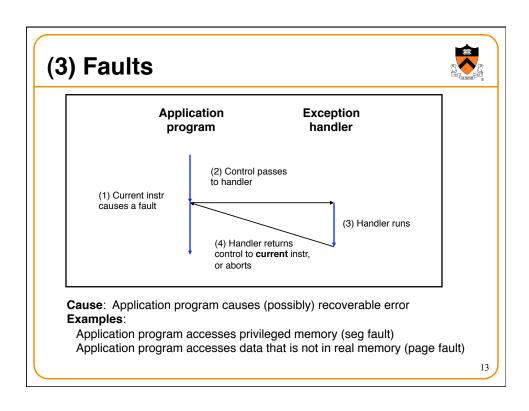
Exceptions

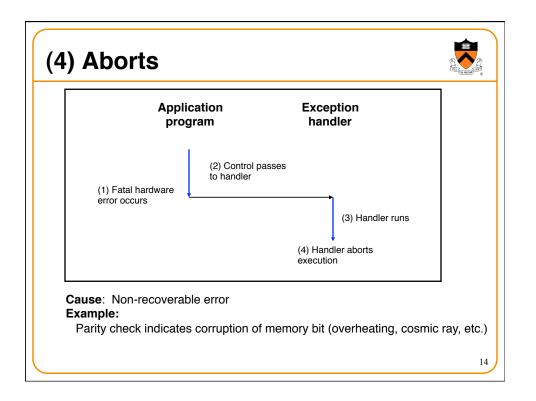
- Exception
 - An abrupt change in control flow in response to a change in processor state
- Synchronous exceptions:
 - · Caused by something the application program does:
 - · Requests I/O
 - · Requests more heap memory
 - · Attempts integer division by 0
 - · Attempts to access privileged memory
 - Accesses variable that is not in real memory (see upcoming "Virtual Memory" lecture)
- Asynchronous exceptions
 - Caused by something not initiated by the application program
 - · User: presses key on keyboard
 - · Hardware: Disk controller finishes reading data

Exceptions vs. Function Calls


- Exceptions are similar to function calls
 - · Control transfers from original code to other code
 - · Other code executes
 - · Control returns to original code
- Exceptions are different from function calls
 - · Processor pushes additional state onto stack
 - · E.g. values of all registers
 - Processor pushes data onto OS's, not application program's, stack
 - · Handler runs in privileged mode, not in user mode
 - · Handler can execute all instructions and access all memory
 - · Control might return to next instruction
 - · Sometimes, control returns to current instruction
 - · Sometimes, control does not return at all


9


Classes of Exceptions

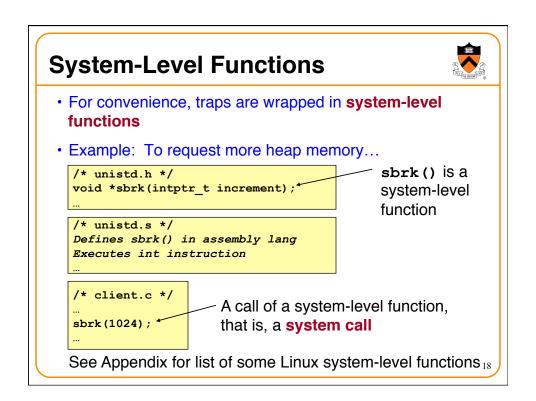


There are 4 classes of exceptions...

Summary of Exception Classes

Class	Cause	Asynch/Synch	Return Behavior
Interrupt	Signal from I/O device	Asynch	Return to next instr
Trap	Intentional	Sync	Return to next instr
Fault	(Maybe) recoverable error	Sync	(Maybe) return to current instr
Abort	Non-recoverable error	Sync	Do not return

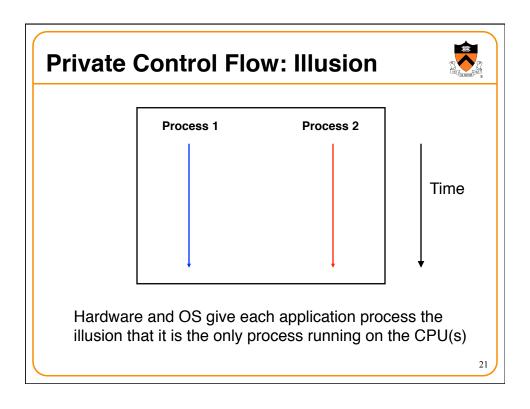
15

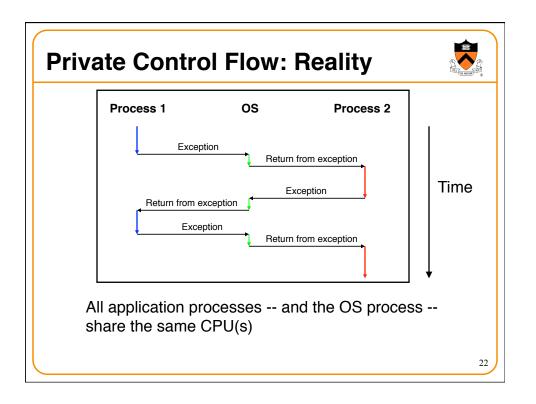

Exceptions in Intel Processors

Every exception has a number Some exceptions in Intel processors:

Exception #	Exception
0	Fault: Divide error
13	Fault: Segmentation fault
14	Fault: Page fault (see "Virtual Memory" lecture)
18	Abort: Machine check
32-127	Interrupt or trap (OS-defined)
128	Trap
129-255	Interrupt or trap (OS-defined)

Processes


- Program
 - · Executable code
- Process
 - · An instance of a program in execution
- When a program "runs", it runs in the context of some process
- · Context consists of:
 - · Process ID
 - Address space
 - TEXT, RODATA, DATA, BSS, HEAP, and STACK
 - · Processor state
 - · EIP, EFLAGS, EAX, EBX, etc. registers
 - Etc


19

Significance of Processes

- Process is a profound abstraction
- The process abstraction provides application programs with two key illusions:
 - · Private control flow
 - · Private address space

Context Switches

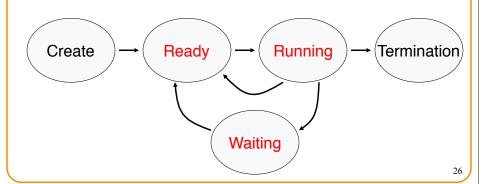
- Context switch
 - The activity whereby the OS assigns the CPU to a different process
 - Occurs during exception handling, at discretion of OS
- Exceptions can be caused:
 - Synchronously, by application pgm (trap, fault, abort)
 - Asynchronously, by external event (interrupt)
 - Asynchronously, by hardware timer
 - So no process can dominate the CPUs
- Exceptions are the mechanism that enables the illusion of private control flow

23

Context Switch Details Context Process 2 Process 1 · State the OS needs to restart a preempted Waiting process Running Save context Context switch · Save the context of Load context current process Waiting Running Restore the saved context of some previously preempted Save context process · Pass control to this newly restored process Load context Waiting Running 24

When Should OS Do Context Switch?

- When a process is stalled waiting for I/O
 - · Better utilize the CPU, e.g., while waiting for disk access

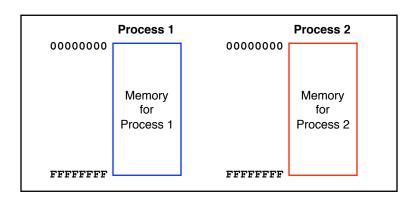

- When a process has been running for a while
 - Sharing on a fine time scale to give each process the illusion of running on its own machine
 - Trade-off efficiency for a finer granularity of fairness

25

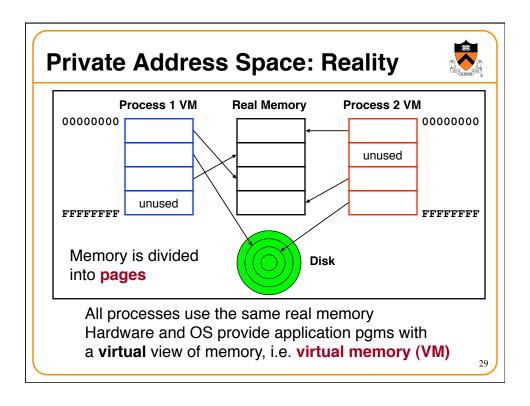
Life Cycle of a Process

- Running: instructions are being executed
- Waiting: waiting for some event (e.g., I/O finish)
- Ready: ready to be assigned to a processor

Context Details



- What does the OS need to save/restore during a context switch?
 - · Process state
 - · New, ready, waiting, terminated
 - · CPU registers
 - EIP, EFLAGS, EAX, EBX, ...
 - · I/O status information
 - · Open files, I/O requests, ...
 - Memory management information
 - Page tables (see "Virtual Memory" lecture)
 - · Accounting information
 - Time limits, group ID, ...
 - · CPU scheduling information
 - · Priority, queues


27

Illusion: Private Address Space

Hardware and OS give each application process the illusion that it is the only process using the memory

Private Address Space Details

- Exceptions (specifically, page faults) are the mechanism that enables the illusion of private address spaces
- See the Virtual Memory lecture for details

Summary

- Exception: an abrupt change in control flow
 - Interrupts: asynchronous; e.g. I/O completion, hw timer
 - Traps: synchronous; e.g. app requests heap memory, I/O
 - Faults: synchronous; e.g. segmentation fault
 - Aborts: synchronous; e.g. parity error
- Process: An instance of a program in execution
 - Hardware and OS use exceptions to give each process the illusion of:
 - Private control flow (reality: context switching)
 - Private address space (reality: virtual memory)

Appendix: System-Level Functions

Linux system-level functions for I/O management

Number	Function	Description
3	read()	Read data from file descriptor Called by getchar(), scanf(), etc.
4	write()	Write data to file descriptor Called by putchar(), printf(), etc.
5	open()	Open file or device Called by fopen ()
6	close()	Close file descriptor Called by fclose()
8	creat()	Open file or device for writing Called by fopen (, "w")

Described in I/O Management lecture

Appendix: System-Level Functions

Linux system-level functions for process management

Number	Function	Description
1	exit()	Terminate the process
2	fork()	Create a child process
7	waitpid()	Wait for process termination
7	wait()	(Variant of previous)
11	exec()	Execute a program in current process
20	getpid()	Get process id

Described in Process Management lecture

Appendix: System-Level Functions

Linux system-level functions for I/O redirection and interprocess communication

Number	Function	Description
41	dup()	Duplicate an open file descriptor
42	pipe()	Create a channel of communication between processes
63	dup2()	Close an open file descriptor, and duplicate an open file descriptor

Described in **Process Management** lecture

Appendix: System-Level Functions

Linux system-level functions for dynamic memory management

Number	Function	Description
45	brk()	Move the program break, thus changing the amount of memory allocated to the HEAP
45	sbrk()	(Variant of previous)
90	mmap()	Map a virtual memory page
91	munmap()	Unmap a virtual memory page

Described in **Dynamic Memory Management** lectures

Appendix: System-Level Functions

Linux system-level functions for signal handling

Number	Function	Description
27	alarm()	Deliver a signal to a process after a specified amount of wall-clock time
37	kill()	Send signal to a process
67	sigaction()	Install a signal handler
104	setitimer()	Deliver a signal to a process after a specified amount of CPU time
126	sigprocmask()	Block/unblock signals

Described in Signals lecture