
1

!

!

Number Systems!
!

2

Why Bits (Binary Digits)?!
•  Computers are built using digital circuits!

•  Inputs and outputs can have only two values!
•  True (high voltage) or false (low voltage)!
•  Represented as 1 and 0!

•  Can represent many kinds of information!
•  Boolean (true or false)!
•  Numbers (23, 79, …)!
•  Characters (‘a’, ‘z’, …)!
•  Pixels, sounds!
•  Internet addresses!

•  Can manipulate in many ways!
•  Read and write!
•  Logical operations!
•  Arithmetic!

3

Base 10 and Base 2!
•  Decimal (base 10)!

•  Each digit represents a power of 10!
•  4173 = 4 x 103 + 1 x 102 + 7 x 101 + 3 x 100!

•  Binary (base 2)!
•  Each bit represents a power of 2!
•  10110 = 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 = 22!

Decimal to binary conversion:!
Divide repeatedly by 2 and keep remainders!
12/2 = 6 R = 0
6/2 = 3 R = 0
3/2 = 1 R = 1
1/2 = 0 R = 1
Result = 1100

4

Writing Bits is Tedious for People!
•  Octal (base 8)!

•  Digits 0, 1, …, 7!

•  Hexadecimal (base 16)!
•  Digits 0, 1, …, 9, A, B, C, D, E, F!

!
0000 = 0! 1000 = 8!
0001 = 1! 1001 = 9!
0010 = 2! 1010 = A!
0011 = 3! 1011 = B!
0100 = 4! 1100 = C!
0101 = 5! 1101 = D!
0110 = 6! 1110 = E!
0111 = 7! 1111 = F!

Thus the 16-bit binary number

1011 0010 1010 1001

converted to hex is

B2A9

5

Representing Colors: RGB!
•  Three primary colors!

•  Red!
•  Green!
•  Blue!

•  Strength!
•  8-bit number for each color (e.g., two hex digits)!
•  So, 24 bits to specify a color!

•  In HTML, e.g. course “Schedule” Web page!
•  Red: De-Comment Assignment Due</

span>!
•  Blue: Reading Period!

•  Same thing in digital cameras!
•  Each pixel is a mixture of red, green, and blue!

6

Finite Representation of Integers!
•  Fixed number of bits in memory!

•  Usually 8, 16, or 32 bits!
•  (1, 2, or 4 bytes)!

•  Unsigned integer!
•  No sign bit!
•  Always 0 or a positive number!

•  Examples of unsigned integers!
•  00000001 è 1!
•  00001111 è 15!
•  00100001 è 33!
•  11111111 è 255 (28 – 1)!

•  All arithmetic is modulo 2n!

•  Signed integers, negative numbers: soon!

7

Adding Two Integers!
•  From right to left, we add each pair of digits!
•  We write the sum, and add the carry to the next column!

 1 9 8

+ 2 6 4

Sum

Carry

 0 1 1

+ 0 0 1

Sum

Carry
2

1

6

1

4

0

0

1

0

1

1

0

Base 10 Base 2

8

Binary Sums and Carries!
!a !b !Sum ! !a !b !Carry!
!0 !0 !0 ! !0 !0 !0!
!0 !1 !1 ! !0 !1 !0!
!1 !0 !1 ! !1 !0 !0!
!1 !1 !0 ! !1 !1 !1!

XOR!
(“exclusive OR”)!

AND!

 0100 0101

 + 0110 0111

 1010 1100

69
103

172

9

Modulo Arithmetic!
•  Consider only numbers in a range!

•  E.g., five-digit car odometer: 0, 1, …, 99999!
•  E.g., eight-bit numbers 0, 1, …, 255!

•  Roll-over when you run out of space!
•  E.g., car odometer goes from 99999 to 0, 1, …!
•  E.g., eight-bit number goes from 255 to 0, 1, …!

•  Adding 2n doesn’t change the answer!
•  For eight-bit number, n=8 and 2n=256!
•  E.g., (37 + 256) mod 256 is simply 37!

•  This can help us do subtraction!
•  Turn subtraction into addition: a – b into a + x!
•  Let x be easily computable from b!
•  Use properties of modulo arithmetic and number complements!

10

Subtraction made easy!
•  Turn subtraction into addition!

•  Suppose you want to compute a – b, in eight-bit representation!
•  This equals (a – b) + 256 ! ! !(modulo arithmetic)!
•  This equals a + (256 – b) ! ! ![generally, a + (2n – b)]!
•  This equals a + (256 -1 - b) + 1 ! ![a + (2n -1 – b) + 1]!

•  2n – 1 – b is easy to compute!
•  2n – 1 is all 1s: 1111 1111 for 28 (256 – 1)!
•  So (2n – 1) – b is just b with all the bits flipped !
•  This is called the oneʼs complement of b!

•  Therefore (2n -1 – b) + 1 is also easy to compute (just add 1)!
•  This is called the twoʼs complement of b!

•  The rest is just an addition with a!

11

One’s and Two’s Complement!
•  Example: 172 – 69 (in eight bit arithmetic)!

•  172 + (28 – 1 – 69) + 1!

•  Compute the oneʼs complement of b (here b = 69)!
•  That’s simply 255 – 69 !

!

•  Flip every bit of 69 to get the oneʼs complement (28 – 1 – 69)!

•  Compute the two’s complement of b!
•  Add 1 to the one’s complement!
•  E.g., (255 – 69) + 1 è 1011 1011!

 - 0100 0101
 1111 1111

 1011 1010

b!
one’s complement of b!

12

Putting it All Together!
•  Computing “a – b”!

•  a + (2n -1 – b) + 1!
•  Same as “a + twosComplement(b)”!
•  Same as “a + onesComplement(b) + 1”!

•  Example: 172 – 69!
•  The original number 69: !0100 0101!
•  One’s complement of 69: !1011 1010 !
•  Two’s complement of 69: !1011 1011!
•  Add to the number 172: !1010 1100!
•  The sum comes to: !0110 0111!
•  Equals: 103 in decimal! 1010 1100

 + 1011 1011

 10110 0111

13

Signed Integers!
•  Sign-magnitude representation!

•  Use one bit to store the sign!
•  Zero for positive number!
•  One for negative number!

•  Examples!
•  E.g., 0010 1100 è 44!
•  E.g., 1010 1100 è -44!

•  Hard to do arithmetic this way, so it is rarely used!

•  Complement representation!
•  -b can be represented as the One’s complement of b!

•  Flip every bit!
•  E.g., 1101 0011 è -44!

•  -b can be represented as the Two’s complement of b!
•  Flip every bit, then add 1!
•  E.g., 1101 0100 è -44!

14

Overflow: Running Out of Room!
•  Adding two large integers together!

•  Sum might be too large to store in the number of bits available!
•  What happens?!

•  Unsigned integers!
•  All arithmetic is “modulo” arithmetic!
•  Sum would just wrap around!

•  Signed integers!
•  Can get nonsense values!
•  Example with 16-bit integers !

•  Sum: 10000+20000+30000 !
•  Result: -5536!

15

Bitwise Operators: AND and OR!
•  Bitwise AND (&)!

•  Mod on the cheap!!
•  E.g., 53 % 16!
•  … is same as 53 & 15;!

!
!
!
!
!
!
!

!

•  Bitwise OR (|)!

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 1 1

53

& 15

0 0 0 0 0 1 0 1 5

16

Bitwise Operators!
• One’s complement (~)!

•  Turns 0 to 1, and 1 to 0!
•  E.g., set last three bits to 0!

•  x = x & ~7;!

• XOR (^)!
•  0 if both bits are the same!
•  1 if the two bits are different!

^

0

1

0 1
0 1

1 0

&
0

1

0 1
0 0

0 1

|

0

1

0 1
0 1

1 1

•  AND (&)!

•  OR (|)!

17

Bitwise Operators: Shift Left/Right!
•  Shift left (<<): Multiply by powers of 2!

•  Shift some # of bits to the left, filling the blanks with 0!

•  Shift right (>>): Divide by powers of 2!
•  Shift some # of bits to the right!
•  For unsigned integer, fill in blanks with 0!
•  What about signed negative integers?!

•  Can vary from one machine to another!

0 0 1 1 0 1 0 1 53

1 1 0 1 0 0 0 0 53<<2

0 0 1 1 0 1 0 1 53

0 0 0 0 1 1 0 1 53>>2

18

Example: Counting the 1’s!
•  How many 1 bits in a number?!

•  E.g., how many 1 bits in the binary representation of 53?!

•  Four 1 bits!

•  How to count them?!
•  Look at one bit at a time!
•  Check if that bit is a 1!
•  Increment counter!

•  How to look at one bit at a time?!
•  Look at the last bit: n & 1!

•  All bits but the last in 1 are zeros, so this n & 1 is either 0 or 1!
•  Check if it is a 1: (n & 1) == 1, or simply (n & 1)!

0 0 1 1 0 1 0 1

19

Counting the Number of ‘1’ Bits!
#include <stdio.h>
#include <stdlib.h>
int main(void) {
 unsigned int n;
 unsigned int count;
 printf("Number: ");
 if (scanf("%u", &n) != 1) {
 fprintf(stderr, "Error: Expect unsigned int.\n");
 exit(EXIT_FAILURE);
 }
 for (count = 0; n > 0; n >>= 1)
 count += (n & 1);
 printf("Number of 1 bits: %u\n", count);
 return 0;
}

20

Summary!
•  Computer represents everything in binary!

•  Integers, floating-point numbers, characters, addresses, …!
•  Pixels, sounds, colors, etc.!

•  Binary arithmetic through logic operations!
•  Sum (XOR) and Carry (AND)!
•  Two’s complement for subtraction!

•  Bitwise operators!
•  AND, OR, NOT, and XOR!
•  Shift left and shift right!
•  Useful for efficient and concise code, though sometimes cryptic!

