Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
* Inputs and outputs can have only two values

 True (high voltage) or false (low voltage)
* Representedas 1 and 0

- Can represent many kinds of information
- Boolean (true or false)
- Numbers (23, 79, ...)
» Characters (‘a’, ‘z’, ...
- Pixels, sounds
* Internet addresses

- Can manipulate in many ways
- Read and write
* Logical operations
* Arithmetic

Base 10 and Base 2

- Decimal (base 10)
- Each digit represents a power of 10
« 4173 =4x103+1x102+7 x 10" +3 x 10°

 Binary (base 2)
- Each bit represents a power of 2
*« 10110 =1x2+0x23+1x22+1x2"+0x20=22

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders

12/2 = 6 R =0
6/2 = 3 R =0
3/2 =1 R =1
1/2 =0 R =1
Result = 1100

Writing Bits is Tedious for People
* Octal (base 8)

. Digits 0, 1, ..., 7

- Hexadecimal (base 16)
- Digits 0, 1, ...,9,A,B,C,D, E, F

0000=0
0001 =1
0010 =2
0011 =3
0100 =4
0101 =5
0110 =6
o111 =7

1000 =8
1001 =9
1010 =A
1011 =B
1100=C
1101 =D
1110 =E
1111 =F

%‘
EEIW‘ME

®

Thus the 16-bit binary number
1011 1010 1001
converted to hex is

B2A9

Representing Colors: RGB

 Three primary colors
- Red
« Green
- Blue

» Strength

- 8-bit number for each color (e.g., two hex digits)
« S0, 24 bits to specify a color

* In HTML, e.g. course “Schedule” Web page

- Red: De-Comment Assignment Due</
span>
- Blue: Reading Period

- Same thing in digital cameras
- Each pixel is a mixture of red, green, and blue

Finite Representation of Integers

 Fixed number of bits in memory
- Usually 8, 16, or 32 bits
* (1, 2, or 4 bytes)

- Unsigned integer
* No sign bit
- Always 0 or a positive number

- Examples of unsigned integers
- 00000001 = 1
- 00001111 =>» 15
- 00100001 = 33
« 11111111 = 255 (28 — 1)

« All arithmetic is modulo 2"

» Signed integers, negative numbers: soon

Adding Two Integers

» From right to left, we add each pair of digits

- We write the sum, and add the carry to the next column

Base 10 Base 2

1 9] 0 1 1
+ 2 6 4 i 0 0]
Sum 4 6 2

Sum | 0 0
Carry () Carry

Binary Sums and Carries

a b Sum a b Carry

0 0 0 0 0 0

0 1 1 0 1 0

1 0 1 1 0 0

1 1 0 1 1 1
XOR AND

(“exclusive OR”)

0100 0101 <— 69
+ 0110 0111 < 103

1010 1100 < 172

Modulo Arithmetic

 Consider only numbers in a range
- E.g., five-digit car odometer: 0, 1, ..., 99999
- E.g., eight-bit numbers O, 1, ..., 255

* Roll-over when you run out of space
- E.g., car odometer goes from 9999910 0, 1, ...
- E.g., eight-bit number goes from 255t0 0, 1, ...

- Adding 2" doesn’ t change the answer
* For eight-bit number, n=8 and 2"=256
- E.g., (37 + 256) mod 256 is simply 37

- This can help us do subtraction
 Turn subtraction into addition: a — b into a + x
 Let x be easily computable from b
-« Use properties of modulo arithmetic and number complements

Subtraction made easy

 Turn subtraction into addition
« Suppose you want to compute a — b, in eight-bit representation

 This equals (a — b) + 256 (modulo arithmetic)
 This equals a + (256 — b) [generally, a + (2" — b)]
- This equals a + (256 -1 - b) + 1 [a+(2"-1 —-Db) + 1]

- 2"—1 — Db is easy to compute
- 2"—1isall1s: 11111111 for28 (256 —1)
« So (2"—1) —b isjust b with all the bits flipped
 This is called the one’s complement of b

- Therefore (2" -1 —b) + 1 is also easy to compute (just add 1)
 This is called the two’s complement of b

* The rest is just an addition with a
10

%‘

One’ s and Two’ s Complement

- Example: 172 — 69 (in eight bit arithmetic)
-+ 172+ (28— 1 —69) + 1

- Compute the one’s complement of b (here b = 69)
 That’ s simply 255 — 69

1111 1111
- 0100 0101 <— b

1011 1010 < one’scomplement of b

- Flip every bit of 69 to get the one’s complement (28 — 1 — 69)

» Compute the two’ s complement of b

- Add 1 to the one’ s complement

. E.g., (255-69) +1 = 1011 1011
11

Putting it All Together

« Computing “a—Db”
ca+((2"-1-Db) +1
- Same as “a + twosComplement(b)”
- Same as “a + onesComplement(b) + 1”

« Example: 172 — 69
 The original number 69: 0100 0101
- One’ s complement of 69: 1011 1010
» Two’ s complement of 69: 1011 1011
- Add to the number 172: 1010 1100
« The sum comes to: 0110 0111
- Equals: 103 in decimal 1010 1100

+ 1011 1011

10110 0111

12

Signed Integers

+ Sign-magnitude representation

- Use one bit to store the sign
« Zero for positive number
« One for negative number

- Examples
- E.g.,, 00101100 = 44
- E.g.,, 10101100 => -44

- Hard to do arithmetic this way, so it is rarely used

- Complement representation
» -b can be represented as the One’ s complement of b
* Flip every bit
- E.g., 1101 0011 > -44
* -b can be represented as the Two’ s complement of b
 Flip every bit, then add 1
+ E.g., 1101 0100 9 -44 i

Overflow: Running Out of Room

- Adding two large integers together
- Sum might be too large to store in the number of bits available
- What happens?

- Unsigned integers
- All arithmetic is “modulo” arithmetic
« Sum would just wrap around

- Signed integers
- Can get nonsense values
- Example with 16-bit integers
« Sum: 10000+20000+30000
* Result: -5536

14

Bitwise Operators: AND and OR

- Bitwise AND (&)

« Mod on the cheap!
- E.g.,,53% 16
* ...issame as 53 & 15;

53

& 15

&

0 1

0
1

0 O
0 1

010

1

1

0

1

010

0

0

1

1

- Bitwise OR (1)

0

1

0
1

0
1

1
1

15

Bitwise Operators

- One’ s complement (~)
* TunsOto1,and1t00
* E.g., set last three bits to 0
e X=X&~7;

+ XOR (%)
0 if both bits are the same
« 1 if the two bits are different

A

0/ 0 1
11 1 0

- AND (&)

OR (I)

16

Bitwise Operators: Shift Left/Right

- Shift left (<<): Multiply by powers of 2
- Shift some # of bits to the left, filling the blanks with 0

53
53<<2

- Shift right (>>): Divide by powers of 2

0

0

1

1

0

1

0

1

1

1

0

1

0

0

0

0

- Shift some # of bits to the right

 For unsigned integer, fill in blanks with O
- What about signed negative integers?
- Can vary from one machine to another

53
53>>2

0

0

1

1

0

1

0

1

0

0

0

0

1

1

0

1

17

Example: Counting the 1’ s

* How many 1 bits in a number?
- E.g., how many 1 bits in the binary representation of 537

0

0

1

1

0

1

0

1

* Four 1 bits

- How to count them?
- Look at one bit at a time
« Check if that bit is a 1
« |[ncrement counter

- How to look at one bit at a time?
- Look at the last bit: n & 1
« All bits but the last in 1 are zeros, so thisn & 1 is either O or 1
« Checkifitisa1:(n& 1) ==1, or simply (n & 1)

18

Counting the Number of ‘1’ Bits

#include <stdio.h>
#include <stdlib.h>
int main(void) {
unsigned int n;
unsigned int count;
printf ("Number: ") ;
if (scanf("%u", &n) !'= 1) {
fprintf (stderr, "Error: Expect unsigned int.\n");
exit (EXIT FAILURE) ;
}
for (count = 0; n > 0; n >>= 1)
count += (n & 1) ;
printf ("Number of 1 bits: %ul\n", count);
return O;

19

Summary

- Computer represents everything in binary
- Integers, floating-point numbers, characters, addresses, ...
* Pixels, sounds, colors, etc.

* Binary arithmetic through logic operations
- Sum (XOR) and Carry (AND)
- Two’ s complement for subtraction

» Bitwise operators
« AND, OR, NOT, and XOR
- Shift left and shift right
- Useful for efficient and concise code, though sometimes cryptic

20

