

Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, ...)
 - Characters ('a', 'z', ...)
 - Pixels, sounds
 - Internet addresses
- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic

Base 10 and Base 2

- Decimal (base 10)
 - Each digit represents a power of 10
 - **4173** = **4** x 10^3 + **1** x 10^2 + **7** x 10^1 + **3** x 10^0
- Binary (base 2)
 - Each bit represents a power of 2
 - **10110** = **1** x 2^4 + **0** x 2^3 + **1** x 2^2 + **1** x 2^1 + **0** x 2^0 = 22

Decimal to binary conversion:

Divide repeatedly by 2 and keep remainders

$$12/2 = 6 R = 0$$

$$6/2 = 3 R = 0$$

$$3/2 = 1 R = 1$$

$$1/2 = 0 R = 1$$

Result = 1100

Writing Bits is Tedious for People

- Octal (base 8)
 - Digits 0, 1, ..., 7
- Hexadecimal (base 16)
 - Digits 0, 1, ..., 9, A, B, C, D, E, F

0000 = 0	1000 = 8
0001 = 1	1001 = 9
0010 = 2	1010 = A
0011 = 3	1011 = B
0100 = 4	1100 = C
0101 = 5	1101 = D
0110 = 6	1110 = E
0111 = 7	1111 = F

Thus the 16-bit binary number

1011 0010 1010 1001

converted to hex is

B2A9

Representing Colors: RGB

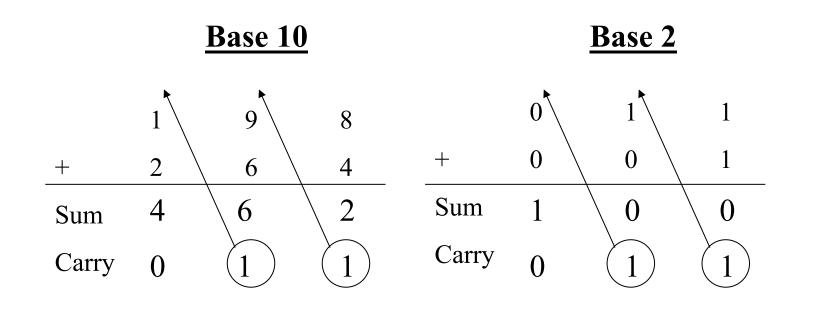
- Three primary colors
 - Red
 - Green
 - Blue
- Strength
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color
- In HTML, e.g. course "Schedule" Web page
 - Red: De-Comment Assignment Due
 - Blue: Reading Period
- Same thing in digital cameras
 - Each pixel is a mixture of red, green, and blue

Finite Representation of Integers

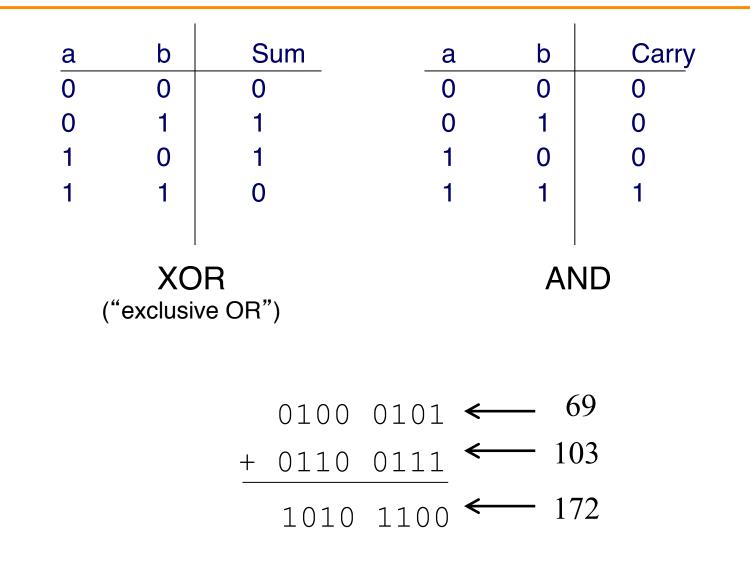
- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)
- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
- Examples of unsigned integers
 - 0000001 **→** 1
 - 00001111 **→** 15
 - 00100001 **→** 33
 - 11111111 → 255 (2⁸ 1)
- All arithmetic is modulo 2ⁿ
- Signed integers, negative numbers: soon

Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column



Binary Sums and Carries



Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, ..., 99999
 - E.g., eight-bit numbers 0, 1, ..., 255
- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, \dots
 - E.g., eight-bit number goes from 255 to 0, 1, \dots
- Adding 2ⁿ doesn't change the answer
 - For eight-bit number, n=8 and 2ⁿ=256
 - E.g., (37 + 256) mod 256 is simply 37
- This can help us do subtraction
 - Turn subtraction into addition: a b into a + x
 - Let x be easily computable from b
 - Use properties of modulo arithmetic and number complements

Subtraction made easy

(modulo arithmetic)

 $[a + (2^n - 1 - b) + 1]$

[generally, $a + (2^n - b)$]

- Turn subtraction into addition
 - Suppose you want to compute a b, in eight-bit representation
 - This equals (a b) + 256
 - This equals a + (256 b)
 - This equals a + (256 -1 b) + 1
 - $2^n 1 b$ is easy to compute
 - $2^n 1$ is all 1s: 1111 1111 for 2^8 (256 1)
 - So $(2^n 1) b$ is just b with all the bits flipped
 - · This is called the one's complement of b
 - Therefore $(2^n 1 b) + 1$ is also easy to compute (just add 1)
 - · This is called the two's complement of b
 - · The rest is just an addition with a

One's and Two's Complement

- Example: 172 69 (in eight bit arithmetic)
 - $172 + (2^8 1 69) + 1$
- Compute the one's complement of b (here b = 69)
 - That's simply 255 69

$$\frac{1111}{0100} \frac{1111}{0101} \longleftarrow b$$

$$1011 1010 \longleftarrow \text{one's complement of b}$$

- Flip every bit of 69 to get the one's complement $(2^8 1 69)$
- Compute the two's complement of b
 - Add 1 to the one's complement
 - E.g., (255 69) + 1 → 1011 1011

Putting it All Together

- Computing "a b"
 - a + (2ⁿ −1 − b) + 1
 - Same as "a + twosComplement(b)"
 - Same as "a + onesComplement(b) + 1"
- Example: 172 69
 - The original number 69: 0100 0101
 - One's complement of 69: 1011 1010
 - Two's complement of 69: 1011 1011
 - Add to the number 172: 1010 1100
 - The sum comes to: 0110 0111
 - Equals: 103 in decimal

1010 1100

+ 1011 1011

10110 0111

Signed Integers

- Sign-magnitude representation
 - · Use one bit to store the sign
 - Zero for positive number
 - One for negative number
 - Examples
 - E.g., 0010 1100 → 44
 - E.g., 1010 1100 → -44
 - · Hard to do arithmetic this way, so it is rarely used
- Complement representation
 - · -b can be represented as the One's complement of b
 - Flip every bit
 - E.g., 1101 0011 → -44
 - · -b can be represented as the Two's complement of b
 - Flip every bit, then add 1
 - E.g., 1101 0100 → -44

Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too large to store in the number of bits available
 - What happens?
- Unsigned integers
 - All arithmetic is "modulo" arithmetic
 - Sum would just wrap around
- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536

DET SUE NUPINE

Bitwise Operators: AND and OR

• Bitwise AND (&)

- Mod on the cheap!
 - E.g., 53 % 16
 - ... is same as 53 & 15;

- & 15
 0
 0
 0
 1
 1
 1
 - 5 0 0 0 0 0 1 0 1

•	Bitwise	OR	(I)
---	---------	----	------------

	0	1
0	0	1
1	1	1

Bitwise Operators

- One's complement (~)
 - Turns 0 to 1, and 1 to 0
 - E.g., set last three bits to 0
 - x = x & ~7;
- XOR (^)
 - 0 if both bits are the same
 - 1 if the two bits are different

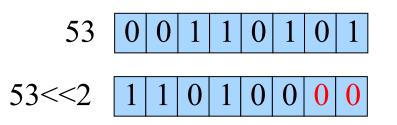
$$\begin{array}{c|ccc}
^{\bullet} & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

1

16

Bitwise Operators: Shift Left/Right

- Shift left (<<): Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0



- Shift right (>>): Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Can vary from one machine to another

Example: Counting the 1's

- How many 1 bits in a number?
 - E.g., how many 1 bits in the binary representation of 53?



- Four 1 bits
- How to count them?
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter
- How to look at one bit at a time?
 - Look at the last bit: n & 1
 - All bits but the last in 1 are zeros, so this n & 1 is either 0 or 1
 - Check if it is a 1: (n & 1) == 1, or simply (n & 1)

Counting the Number of '1' Bits

```
#include <stdio.h>
#include <stdlib.h>
int main(void) {
  unsigned int n;
  unsigned int count;
  printf("Number: ");
  if (scanf("%u", &n) != 1) {
      fprintf(stderr, "Error: Expect unsigned int.\n");
     exit(EXIT FAILURE);
   for (count = 0; n > 0; n >>= 1)
      count += (n & 1);
  printf("Number of 1 bits: %u\n", count);
  return 0;
}
```

Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, ...
 - Pixels, sounds, colors, etc.
- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two's complement for subtraction
- Bitwise operators
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic