4.4 Symbol Tables and BSTs

THARMARKETING. COM Ko

“I no longer teach the meaning of life. I now
Jfocus on search engine optimization, which,
in my opinion, is the meaning of life.”

Symbol Table Symbol Table Applications

Symbol table. Key-value pair abstraction.

Tnert ky with specifed vale.

* Given a key, search for the corresponding value.

phone book look up phone number name phone number
bank process transaction account number transaction details
file share find song to download name of song computer ID
Ex. [DNS lOOkUp] file system find file on disk filename location on disk
. IY.ISQPT URL VYiTh specified IP address. dictionary look up word word definition
* Given URL' find cor‘r‘espondmg IP address. web search find relevant documents keyword list of documents
book index find relevant pages keyword list of pages
URL web cache download filename file contents
ML o E T U B 1L B genomics find markers DNA string known positions
www.princeton. edu EELIofE Hlork Lot DNS find TP address given URL URL IP address
G CE 130.132.143.21 reverse DNS find URL given IP address IP address URL
W hazvazd. edu 128.103.060.55 compiler find properties of variable variable name value and type
oSO 209.052.165.60 routing table route Internet packets destination best route

key value

Symbol Table APT

pubTlic class ST<Key extends Comparable<Key>, Value>

STO

void put(Key key, Value v)

Value get(Key key)
boolean contains(Key key)

/

symbol table is a
key

set of key-value pairs

Bob

Dave 9876

Alice

create a symbol table
put key-value pair into the table
return value paired with key, nu11 if key not in table

is there a value paired with key?

1234

N

value

5665

2927

Symbol Table APT

pubTlic class ST<Key extends Comparable<Key>, Value>

STO

void put(Key key, Value v)

Value get(Key key)
boolean contains(Key key)

get (“Alice”) ;
returns 2927

Bob

Dave 9876

Alice

create a symbol table
put key-value pair into the table
return value paired with key, nu11 if key not in table

is there a value paired with key?

1234

Zeke 1001

5665

2927

Symbol Table APT

public class ST<Key extends Comparable<Key>, Value>

STO create a symbol table
void put(Key key, Value v) putkey-value pairinto the table
Value get(Key key) return value paired with key, nu11 if key not in table

boolean contains(Key key) is there a value paired with key?

Bob 1234

9876

Dave
put (“Zeke”, 1001);
adds key-value pair

1001

Zeke

Carl 5665

Alice

2927

Symbol Table APT

public class *ST<Key extends Comparable<Key>, Value>

*STQO create a symbol table

void put(Key key, Value v) putkey-value pairinto the table

Value get(Key key) return value paired with key, nu11 if key not in table

boolean contains(Key key) is there a value paired with key?

Note: Impl ions should also impl the Iterable<Key> interface to enable clients to access

keys in sorted order with foreach loops.

Bob 1234

contains (“Alice”) ;
returns true

9876

Dave

1001

Zeke

contains (“Fred”) ;

returns false 3

Carl

Alice

2927

Symbol Table APT

public class *ST<Key extends Comparable<Key>, Value>

*STQ) create a symbol table
void put(Key key, Value v) putkey-value pair into the table
Value get(Key key)
boolean contains(Key key)

Note: Impl ions should also impl
keys in sorted order with foreach loops.

return value paired with key, nu11 if key not in table

is there a value paired with key?

the Iterable<Key> interface to enable clients to access

put (“Bob”, 2927);
changes Bob's value

Bob 2927

9876

Dave

Zeke 1001

"Associative array” notation
st[“Bob”] = 2927;

is legal in some languages
(not Java)

Carl 5665

Alice 2927

Symbol Table Client Example 2: Frequency Counter

Frequency counter. [e.g., web traffic analysis, linguistic analysis]
* Key: string

¢ Value: Integer counter

* Read a key from standard input.

Symbol Table Client Example 1: Index

Indexmg % more tiny.txt
. it was the best of times it was the worst of times
. Key; sfr‘mg it was the age of wisdom it was the age of foolishness
it was the epoch of belief it was the epoch of incredulity
° : 1 it was the season of light it was the season of darkness
Value: Queue of integers it was the spring of hope it was the winter of despair

* Read a key from standard input.
* If key is in symbol table, add its position to queue
If key is not in symbol table, create a queue first

public class Index
{
public static void main(String[] ary Keyliype value type
{
ST<String, Queue> st = new ST<String, Queue>();

int i = 0;

while ('StdIn.isEmpty())

{
String key = StdIn.readString();
if (!'st.contains(key)) st.put(key, new Queue());
st.get (key) .enqueue (i++) ;

/ enhanced for loop (stay tuned)

for (String s : st)
StdOut.println(s + " " + st.get(s));

Sample datasets

% java Index < tiny.txt
age 15 21

belief 29

best 3

darkness 47

despair 59

epoch 27 33

foolishness 23

hope 53

incredulity 35

it 0 6 12 18 24 30 36 42 48 54
light 41

of 4 10 16 22 28 34 40 46 52 58
season 39 45

spring 51

the 2 8 14 20 26 32 38 44 50 56
times 5 11

was 1 7 13 19 25 31 37 43 49 55
winter 57

wisdom 17

worst 9

Linguistic analysis. Compute word frequencies in a piece of text.

* If key is in symbol table, increment counter by 1;
If key is not in symbol table, insert it with counter = 1.

public class Freq

{

public static void main(String[] args)

{

key t
Y TYPE e type
ST<String, Integer> st = new ST<String, Integer>();

while (!StdIn.isEmpty()) calculate frequencies

{
String key = StdIn.readString();
if (st.contains(key)) st.put(key, st.get(key) + 1);
else st.put(key, 1);

}

/ enhanced for loop (stay tuned)

for (String s : st)
StdOut.println(st.get(s) + " " + s);

print results

$ java Freq < tiny.txt
2 age

1 belief

1 best

1 darkness
1 despair
2 epoch

1 foolishness
1 hope

1 incredulity
10 it

mobydick. txt Melville's Moby Dick 210,028 16,834
leipzigl00k.txt 100K random sentences 2,121,054 144,256
leipzig200k.txt 200K random sentences 4,238,435 215,515

leipziglm.txt 1M random sentences 21,191,455 534,580

Reference: Wortschatz corpus, Univesitit Leipzig

http://corpora.informatik.uni-leipzig.de

Zipf's Law

Linguistic analysis. Compute word frequencies in a piece of text.

e.g., most frequent word occurs about twice

/ as offen as second most frequent one

Zipf's Law

Linguistic analysis. Compute word frequencies in a piece of text.

% java Freq < mobydick.txt % java Freq < mobydick.txt | sort -rn % java Freq < leipziglm.txt | sort -rn
1160105 the
4583 a 13967 the
593492 of
2 aback 6415 of
560945 to
2 abaft 6247 and
472819 a
3 abandon 4583 a
435866 and
7 abandoned 4508 to
3 430484 in
1 abandonedly 4037 in
205531 for
2 abandonment 2911 that
R 192296 The
2 abased 2481 his
3 188971 that
1 abasement 2370 it
i 172225 is
2 abashed 1940 i)
1 abate 1793 but 148915 said
147024 on
w 141178 was
118429 by

Zipf's law. Frequency of i most common word is inversely proportional to i. Zipf's law. Frequency of i most common word is inversely proportional to i.

Challenge: Develop symbol-table implementation for such experiments.

Symbol Table: Elementary Implementations Symbol Table: Implementations Cost Summary

Unordered array.

* Put: add key to the end (if not already there).
* Get: scan through all keys to find desired value.

32 26 47 82 4 20 58 56 14 6 55 %%

Unordered array. Hopelessly slow for large inputs.
Ordered array. Acceptable if many more searches than inserts;

too slow if large number of inserts.

Running Time

N N = =

170 sec 41hr

Frequency Count

Ordered array.
e Put: find insertion point, and shift all larger keys right.
* Get: binary search to find desired key.

unordered array

ordered array log N @ 5.8 sec 5.8 min 15 min 2.1hr

~] 7

doubling test: quadratic
too slow: ~N? to build entire table

4 6 14 20 26 32 47 55 56 58 82 %%
e CEEOREREE

Challenge. Make all ops logarithmic.
Note: Linked lists are not much help (have to traverse list)

Binary Search Trees

Reference: Knuth, The Art of Computer Programming

BST Search

successful search
for a node with key the

the isafter it
50 go to the right

the is before was
s0 go to the left

the

A

success!

unsuccessful search
for a node with key tim

the

es

times is after it

&~ 50 go to the right

=

AN

imes is before was
50 go to the left

times is after the
but the right link is null
so the BST has no node
having that key

Binary Search Trees

Def. A binary search tree is a binary tree, with keys in symmetric order.

®.
Binary tree is either: /

* Empty. \

* A key-value pair and two binary trees.

o b

we suppress values from figures

Symmeftric order.
* Keys in left subtree are smaller than parent.
* Keys in right subtree are larger than parent.

A
smaller keys
BST Insert
insert times
- times isafterit
4~ 50 go to the right
[was]
S~ times is before was
50 go to the left
the
™~ times is after the
so it goes on the right
the

(values hidden)

PN
()
§

node

B

larger keys

BST Construction

of
key
inserted

was [t]

was times
the lﬂﬂ.

was
the

best worst

BST: Skeleton

BST. (with generic keys and values).

public class BST<Key, Value>
{

private Node root; // root of the BST
private class Node
{

private Key key;

private Value val;

private Node left, right;

private Node (Key key, Value val)
{
this.key
this.val

key;
val;

}

public void put(Key key, Value val) { .. }
public Value get(Key key) { ..}
public boolean contains (Key key) { ..}

21

Binary Search Tree: Java Implementation

To implement: use two links per Node.

A Node is comprised of:

* A key.

* A value.

* A reference to the left subtree.
* A reference to the right subtree.

BST: Get

private class Node

{
private
private
private
private

}

Key key;

Value val;
Node left;
Node right;

Get. Return val corresponding to given key, or null if no such key.

public Value get (Key key)
{
return get(root, key);

}

private Value get(Node x, Key key)

{
if (x == null) return null;
int cmp = key.compareTo (x.key) ;
if (cmp < 0) return get(x.left,
else if (cmp > 0) return get(x.right,
else return x.val;

}

public boolean contains (Key key)
{

return (get(key) !'= null);
}

key) ;
key) ;

BST: Put

Put. Associate val with key.
¢ Search, then insert.
* Concise (but tricky) recursive code.

public void put(Key key, Value val)
{
root = put(root, key, val);

}

private Node put(Node x, Key key, Value val)
{

if (x == null) return new Node (key, val);

int cmp = key.compareTo (x.key) ;

if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
else x.val = val;

return x; overwrite old value with new:

25

Inserting a new node ina BST

public void put(Key key, Value val)
{

root = put(root, key, val);

}

root

lit
/ \
—

the
x/// \\\
£

times

best

[e]

27

Inserting a new node ina BST

public void put(Key key, Value val)
{

root = put(root, key, val);
}

key
times

/\

best was

—

the

~

of

BST Implementation: Practice

Bottom line. Difference between a practical solution and no solution.

Running Time Frequency Count

unordered array N N 170 sec 4.1hr - -

ordered array log N N 5.8 sec 5.8 min 15 min 21hr

doubling test: scalable

Running time per put/get.

depth =
depth =

depth =
depth =

depth =

BST: Analysis

* There are many BSTs that correspond to same set of keys.
* Cost is proportional to depth of node.

~

w

®
e

& e
SR Et

AN

BST: Analysis

Worst case. If tree is unbalanced, depth is N.

be

Y

S

t

o

g \
i g

o«

number of nodes on path from root to node

>\

/

(e
/N \
9&99
@

29

BST: Analysis

Best case. If tree is perfectly balanced, depth is at most 1g N.

T e e

BST: Analysis

Average case. If keys are inserted in random order,
average depth is 2InN.

requires proof
(see COS 226)

[best] the -m

Typical BSTs constructed from randomly ordered keys

BST insertion: random order

Observation. If keys inserted in random order, tree stays relatively flat.

" :
:
| 'gz |

2

33

Symbol Table: Implementations Cost Summary

BST. Logarithmic time ops if keys inserted in random order.

Running Time Frequency Count

N N o -

unordered array 170 sec 4.1hr

ordered array log N N 5.8 sec 5.8 min 15 min 21hr

BST .95 sec 7.1sec 14 sec 69 sec

1 assumes keys inserted in random order

Q. Can we guarantee logarithmic performance?

35

BST insertion: random order visualization

Ex. Insert keys in random order.

N = 255

Red-Black Tree

Red-black free. A clever BST variant that guarantees depth <21g N.

see COS 226

Java red-black tree library implementation

import java.util.TreeMap;
import java.util.Iterator;

public class ST<Key>, Value> implements Iterable<Key>
{

private TreeMap<Key, Value> st = new TreeMap<Key, Val>();

public void put(Key key, Value val)
{

if (val == null) st.remove (key) ;

else st.put(key, val);
}
public Value get(Key key) { return st.get (key); }
public Value remove (Key key) { return st.remove (key) ; }
public boolean contains(Key key) { return st.containsKey (key) ; }
public Iterator<Key> iterator() { return st.keySet().iterator(); }

34

Red-Black Tree

Red-black tree. A clever BST variant that guarantees depth <21gN.

see COS 226

Running Time Frequency Count

unordered array N N 170 sec 4.1hr - -

ordered array log N N 5.8 sec 5.8 min 15 min 21hr

BST log N * logN ¥ .95 sec 7.1 sec 14 sec 69 sec

red-black .95 sec 7.0 sec 14 sec 74 sec

1 assumes keys inserted in random order

37

Iteration

39

Insertion in a LLRB tree: visualization

N = 255

255 random insertions

38

Inorder Traversal

Inorder traversal. @

* Recursively visit left subtree. / \
« Visit node. ’

* Recursively visit right subtree. \ / \

CHCEENCRNC)

inorder: at be do go hi if me no of pi we

public inorder ()
{ inorder(root); }

private void inorder (Node x)
{
if (x == null) return;
inorder (x.left) ;
StdOut.println (x.key) ;
inorder (x.right) ;

40

Enhanced For Loop

Enhanced for loop. Enable client to iterate over items in a collection.

ST<String, Integer> st = new ST<String, Integer>();

for (String s : st)
StdOut.println(st.get(s) + " " + s);

41

Symbol Table: Summary
Symbol table. Quintessential database lookup data type.
Choices. Ordered array, unordered array, BST, red-black, hash,
* Different performance characteristics.

* Fast search, insert, and ordered iteration is available.
* Java libraries: TreeMap, HashMap.

Remark. Better symbol table implementation improves all clients.

43

Enhanced For Loop with BST

BST. Add following code to support enhanced for loop (uses a stack).

~ see COS 226 for details

import java.util.Iterator;
import java.util.NoSuchElementException;

public class BST<Key extends Comparable<Key>, Value> implements Iterable<Key>
{

private Node root;
private class Node { .. }

public void put(Key key, Value val) { .. }
public Value get(Key key) { .1}
public boolean contains(Key key) { .}

public Iterator<Key> iterator() { return new Inorder(); }
private class Inorder implements Iterator<Key>
{
Inorder() { pushLeft(root); }
public boolean hasNext() { return !stack.isEmpty() }
public Key next()
{
if ('hasNext()) throw new NoSuchElementException() ;
Node x = stack.pop();
pushLeft (x.right) ;
return x.key;
}
public void pushLeft (Node x)
{
while (x !'= null) {
stack.push (x) ;
x = x.left;
}
}

42

