Data Structures and Data Types

Data types

* Set of values.

* Set of operations on those values.

* Some are built in o Java: int, double, char, String, ...

¢ Most are not: complex, Picture, Charge, Stack, Queue, Graph, ...

this lecture
Data structures.

* Represent data.
* Represent relationships among data.
* Some are built in to Java: arrays, . ..

* Most are not: linked list, circular list, tree, sparse array, graph, . . .

t t t

this lecture TSP next lecture
(assignment 8)

Design challenge for every data type: What data structure to use?
* Requirement 1: Space usage.
* Requirement 2: Time usage for data-type methods

4.3 Stacks and Queues

Dr. Dmitry Debugalov
Finds the bug on top
of the Stack.

Collections

Fundamental data types.

* Set of operations (add, remove, test if empty) on generic data.
* Intent is clear when we insert.

* Which item do we remove?

LIFO = "last in first out"

Stack. (this lecture) /

* Remove the item most recently added.

* Ex: cafeteria trays, Web surfing.
Quete. (see text) P FIFO = "first in first out"
* Remove the item least recently added.

* Ex: Registrar's line.

Symbol Table. (next lecture)
* Remove item with a given key.
« Ex: Phone book

FIFO Queue APT

FIFO Queues public class QueueOfStrings
QueueOfStrings() create an empty queue
~ int Tength(Q size of the queue
server queue of customers . . R X
* / void put(String item) putastring onto the queue
M@ String get(Q get a string from the queue
new arrival
at the end
enqueue
?@ (EB]En]ED)
new arrival
at the end
o o Y
® LOOO® " "
[t fne. TES put RS get TED get
—_— —_— —_—
dequeue the the the the
N) OEE@™
best best best best
ext in s
leaves quete of of of

dequeue

\
O O [@om

Queue Client Code Example: Read from input stream into an array

from previous lecture

Pushdown Stacks

length
F——

3

String[] words;
// Fill words[] with strings from In (stay tuned).

N\

QueueOfStrings q = new QueueOfStrings();
while ('in.isEmpty())
q.put(in.readString());
int N = g.length();
words = new String[N];
for (int i = 0; i < N; i++)
words[i] = qg.get();

Solves basic problem
* Can't store strings in array until it is created.
* Can't create array without knowing how many strings in input stream.
* Can't know how many strings in input stream without reading them all.
* Solution: keep them in a Queue

See text for implementation/applications (after learning about Stacks).

astack of
documents

push(=) new (gray) one

.~ goeson top

=

push () ew (black) on
- goesontop

remove the

>~ pop() .~ blackone

remove the

<=7 = pop()

e
gg;;;§KMMW

Stack APT Stack Client Example 1: Reverse

public class *StackOfStrings public class Reverse
. {
*
StackOfStrings() create an empty stack public static void main(String[] args)
boolean isEmpty() is the stack empty? {
. . . . StackOfStrings stack = new StackOfStrings();
void push(String item) push astring onto the stack while (1StdIn.isEmpty())
String pop(Q) pop the stack stack.push (StdIn.readString());
- while (!'stack.isEmpty())
. X X . . StdOut.print(stack.pop()) ;
: we will consider more than one implementation Stdout.println() ;
}
}
% more tiny.txt
it was the best of times
(B . % java Reverse tiny.txt
times . N
of of of times of best the was it
best push best pop best pop best of
—_— e e
the the the the best stack contents when
StdInis empty
was was was was the
it it it it —
it
9 10
Stack Client Example 2: Test Client Stack Client Example 3: Balanced Parentheses
public static void main(String[] args)
{
StackOfStrings stack = new StackOfStrings();
while (!StdIn.isEmpty())
{
String item = StdIn.readString(); * *
if (item.compareTo("-") != 0) (((a+b) d) + (e £))
stack.push (item) ; ()
else () ()
System.out.print(stack.pop()); ()
} push I I I pop
) System.out.println() ; push I I pop push pop
% more test.txt push pop
to be or not to - be - - that - - - is

% java StackOfStrings < test.txt
to be not that or be

to
<«—— stack contents just before first pop () operation
or
be

to

Stack Client Example 3: Balanced Parentheses

public class Balanced
! public static void main(String[] args)
{ StackOfStrings stack = new StackOfStrings();
while (!StdIn.isEmpty())
{ String item = StdIn.readString();

if (item.compareTo(" (") == 0)
stack.push (item) ;
if (item.compareTo(")") == 0)

{
if (stack.isEmpty())
{ StdOut.println(“Not balanced”); return; }
stack.pop() ;
}
}
if (!stack.isEmpty()) StdOut.println(“Not balanced”) ;
else StdOut.println(“Balanced”) ;

% java Balanced
(((a+b) *d)+ (e*xf))
Balanced

% java Balanced
((a+b) *d) + (e*f))
Not balanced

Array Stack: Trace

StdIn StdOut N al)
0 1 2 3 4
0

push ~ to 1 to

be 2 to be

or 3 to be or

not 4 to be or not

to 5 to be or not to
pop - to 4 to be or not

be 5 to be or not be

- be 4 to be or not

- not 3 to be or

that 4 to be or that

- that 3 to be or

- or 2 to be

- be 1 to

is 2 to is

Stack: Array Implementation

Array implementation of a stack.
* Use array a[] to store N items on stack. <—— PROBLEM: How big to make array? (Stay tuned.)
* push() add new item at a[N]. > e

[TTTTTTTT]

*pop() removeitem from a[N-1]. &y o

Strawman solution: Make client provide capacity.

publichclassEArraystackoLstrings NOTE: This 'solution’ violates the APT!

{
private String[] a;
private int N = 0;

public ArrayStackOfStrings (int max)

{ a = new String[max]; }
not stack contents after

public boolean isEmpty () or 4th push() operation

{ return (N == 0); }
be
public void push(String item)
{ a[N++] = item; } S

«—2z

public String pop()
{ return a[--N];
} a[0] a[l] a[2] a[3]

} to be or not

TEQ on Stacks

Q. Can we always insert pop commands (-) o make strings come out sorted?
Exl:6 54321--- - -
Ex2:1 -2 -3-4-5-6 -

Ex3:41-32---65- -

Array Stack: Performance
Running time. Push and pop take constant time. v

Memory. Proportional to client-supplied capacity, not number of items.

Problem.
* Original API does not call for capacity (never good to change APT)
* Client might have multiple stacks
* Client might not know what capacity to use (depends on its client)

]] |] |] K]
!] |] |] |]
!] .] .] .]
I]]]]] [
I] |] |] [S|
N |] |] [
] |] |] .]
I] |]]] |]
] |] |] |]
N]] I]]]
] | [S | S
o N | I [I | I
[I | I— | | I—

Challenge. Stack implementation where space use is not fixed ahead of time.

Linked Lists

X

17

Official Florida Presidential Ballot

Follow the arrow and Punch the appropriate dot.

Bush > .
Buchanan .
Gore 5 .
Nader [A

(¢) 2000 Mike Collins, Taterbrains.com

Example: potential stack client

Possible implementation of Java memory management system (sketch)

Maintain N stacks

» stack i: blocks of contiguous 2' byte chunks of memory
* new: pop from stack t, where 2' is smallest block that will hold new object

« stack t empty? pop from t+1, split in half, push 2 blocks on stack t

* garbage collector: periodically finds unused memory blocks <—— How see cos 226.

and pushes onto appropriate stack.

Properties
* many stacks
* stack size unpredictable

16

Stack implementation without capacity restriction (as in API) is a requirement

Sequential vs. Linked Data Structures

Sequential data structure. Put object one next to another.

* TOY: consecutive memory cells.
» Java: array of objects.

Linked data structure. Include in each object a link to the another one.

* TOY: link is memory address of next object.
* Java: link is reference to next object.

Key distinctions. get i™ element
* Array: arbitrary access, fixed size.
o Linked list: sequential access, variable size.

get next element

Linked structures.
* Not intuitive, overlooked by naive programmers
* Flexible, widely used method for organizing data

co

c1

c2

c3

ca

cs

cé

c71

cs

co

ca

cB

o]

"Alice"

array

co "carol"

c1 null

c2 -

c3 -

c4 "Alice”

c5 ca

cé -

c7 -

c8 -

co -

cA "Bob"

cB co —
linked list

20

Singly-linked data structures

From the point of view of a particular object, all of these structures
look the same: @—

Sequential list (this lecture) Rho o \
| 1™
Tree \ e N

Circular list (TSP) /T \ \
. /N N
/ \ /N1

—_ — — —> —> —

™

\ / General case l «
~ | '
Y /N
~. 7_' N /

7 \“\\

Multiply linked structures: many more possibilities!

21

Building a Linked List

Node third =
third.item = "Carol"; —> Cco "Carol"
ird. ni = null;
third.next u - aull
Node second = new Node() ; c2 =
second.item = "Bob"; 5
second.next = third; ¢ -
first C4 —> C4 "Alice"
Node first = new Node() ;
first.item = "Alice"; second € &
first.next = second; third CO c6 =
c7 =
cs8 =
c9 =
L——> CaA "Bob"
. CB co —
first second third
| | | ——
. cD -
Alice — Bob e—— Carol .
item next \ - -
null = _

main memory

Linked Lists

Linked list.

* Simplest linked structure.

* A recursive data structure.

* An item plus a pointer to another linked list (or empty list).
* Unwind recursion: linked list is a sequence of items.

Node data type. public class Node
* A reference String. i
reference to a string private String item;
* A reference to another Node. private Node next;
}

Confusing point:
Purpose of data structure is to represent data in a data type
but, we also use data types fo implement data structures
Example: The data type Node acts behind the scenes to implement
the linked list data structure. It is not visible to the client.
first

\\\\ Alice Bob Carol e

item next

special pointer value null terminates list
22

Traversing a List

Tteration. Idiom for traversing a null-terminated linked list.

Node x = first;
while (x '= null)

StdOut.println(x.item) ;
X = x.next;

shorthand version

for (Node x = first; x != null; x = x.next)
StdOut.println(x.item) ;

StdOut

first

\ Alice — Bob ——> Carol .

item next

24

public class LinkedStackOfStrings

{

Stack Push: Linked List Implementation

first

best » the >
first second

best —— the ——
first second

| !

best 5 the

first second

| !

of 5 best —_, the

second = first;

first = new Node() ;

first.item
first.next

Stack: Linked List Implementation

private Node first = null;

private class Node

{
private String item;
private Node next;

public boolean isEmpty ()
{ return first == null; }

public void push(String item)
{
Node second = first;
first = new Node() ;
first.item = item;
first.next = second;

}

public String pop()

{
String item = first.item;
first = first.next;
return item;

}

not

or

stack contents after
4th push() operation
in test client

\
be \

Note difference between first and second:

first: an instance variable that retains state

second: a local variable that goes out of scope

Stack Pop: Linked List Implementation

) woEn
first ©
of best the was ___ . it item = first.item;
first
best the was . it first = first.next;
garbage-collected
first
best the was . it return item;

26

Linked List Stack: Trace

StdIn StdOut

push to
be
or
not
=
=
t o
==
0| - to ot o
pop = g T ey
L= =0
b =]
¢ B
s g e B |
3 =
B
=
- not
A m
[]
that

28

Linked-List Stack: Performance
Running time. Push and pop take constant time. v

Memory. Always proportional o nhumber of items in stack.

TEQ on List Processing 1

What does the following code do?

Node list = null;
while (!StdIn.isEmpty())
{
Node old = list;
list = new Node() ;
list.item = StdIn.readString();
list.next = old;
}
for (Node t = list; t != null; t = t.next)
StdOut.println(t.item) ;

v

31

Stack Data Structures: Tradeoffs

Two data structures to implement the Stack data type.

Array.
* Every push/pop operation take constant time.
* But does not implement API.. (must fix max capacity ahead of time).

Linked list.
« Every push/pop operation takes constant time.
* But.. uses extra space and time to deal with references.

Client can evaluate performance tradeoffs to choose among APIs
(implicitly choosing among underlying data structures)

30

TEQ on List Processing 2

What does the following code do?

Node list = new Node() ;
list.item = StdIn.readString();
Node last = list;
while ('StdIn.isEmpty())
{
last.next = new Node() ;
last = last.next;;
last.item = StdIn.readString() ;

32

Parameterized Data Types

Par‘ameTerized DGTG Types We implemented: stackOfStrings.

We also want: StackOfMemoryBlocks, StackOfURLs, StackOfInts, ...

Strawman. Implement a separate stack class for each type.
* Rewriting code is tedious and error-prone.
* Maintaining cut-and-pasted code is tedious and error-prone.

34

Generics Generic Stack: Linked List Implementation

public class LinkedStackOfStrings public class Stack<Item>
{ {

private Node first = null; private Node first = nu

Generics. Parameterize stack by a single type.

private class Node private class Node parameterized

{ { type name

. ., private String item; private Item item; chosen by
Stack of Apples parameterized type private Node next; private Node next; programmer

} }

Stack<Apple> stack = new Stack<Apple>(); public boolean isEmpty () public boolean isEmpty ()
Apple a = new Apple(); { return first == null; } { return first == nul }
Orange b = new Orange() ;
stack.push (a); public void push(String item) public void push(Item item)
stack.push(b) ; // compile-time error { {
5 = meee pop() . Node second = first; Node second = first;
° ! first = new Node() ; first = new Node() ;
first.item = item; first.item = item;
. Can't push an “Orange” first.next = second; first.next = second;
sample client “ "
onto a “Stack of Apples’ } }
public String pop() public Item pop ()
{ {
String item = first.item; Item item = first.item;
first = first.next; first = first.next;
return item; return item;

36

Autoboxing

Generic stack implementation.
* Cannot use primitives with parameterized data types
* Can only substitute a reference type name for a parameterized name.

Wrapper type.

* Each primitive type has a wrapper reference type.

* Ex: Integer is wrapper type for int.

* Wrapper type has larger set of operations than primitive type.
* Values of wrapper type are objects.

Autoboxing. Automatic cast from primitive type to wrapper type.
Autounboxing. Automatic cast from wrapper type to primitive type.

Stack<Integer> stack = new Stack<Integer>() ;
stack.push(17) ; // Autobox (int -> Integer)
int a = stack.pop(); // Auto-unbox (Integer -> int)

Stack Client 4: Arithmetic Expression Evaluation

value stack

Goal. Evaluate infix expressions. operator stack

(1+CC2+3)*C4%5)))
\ N

operand operator

Two stack algorithm. [E. W. Dijkstra]
* Value: push onto the value stack.
* Operator: push onto the operator stack.
* Left parens: ignore.
* Right parens: pop operator and two values;
push the result of applying that operator
to those values onto the operand stack.

Stack Applications

Real world applications.

* Parsing in a compiler.

* Java virtual machine.

* Undo in a word processor.

* Back button in a Web browser.

* PostScript language for printers.

» Implementing function calls in a compiler.

38

Arithmetic Expression Evaluation

public class Evaluate
{
public static void main(String[] args)
{
Stack<String> ops = new Stack<String>();
Stack<Double> vals = new Stack<Double>() ;
while (!StdIn.isEmpty())
{
String s = StdIn.readString();

if (s.equals(" (")) ;
else if (s.equals("+")) ops.push(s) ;
else if (s.equals("*")) ops.push(s) ;

else if (s.equals(")"))
{
String op = ops.pop();
if (op.equals("+"))
vals.push(vals.pop() + vals.pop());
else if (op.equals("*"))
vals.push(vals.pop() * vals.pop()):;
}
else vals.push(Double.parseDouble(s)) ;
}
StdOut.println(vals.pop()) ;

} } % java Evaluate
(1+ ((2+3)*(4*x5)))
101.0

40

Correctness
Why correct? When algorithm encounters an operator surrounded by two
values within parentheses, it leaves the result on the value stack.
(14 ((2+3)*(4*5)))
So it's as if the original input were:
(1+ (5% (4%x5)))

Repeating the argument:

(1+ (5*20))
(1+ 100)
101

Extensions. More ops, precedence order, associativity, whitespace.

1+ (2-3-4) *5 % sqrt(6%6 + 7*7)

41

Real-World Stack Application: PostScript

PostScript (Warnock-Geschke, 1980s). A turtle with a stack. 20
* postfix program code

* add commands to drive virtual graphics machine
* add loops, conditionals, functions, types

PostScript code

units are points 100 100 moveto
Zperind) ™, 100 300 lineto
300 300 lineto
300 100 lineto
stroke

define a path

FedEXr

draw the path

Simple virtual machine, but not a toy. >

* Easy to specify published page.

* Easy to implement on various specific printers
* Revolutionized world of publishing.

* Virtually all printed material is PostScript.

DISCOVR

Crsco Svsvams

:.;ummm @ m
cla & atat

@n Gy Vish
TS e i
~ 0w ine®

walsmart ac;dc Femeg

S |V SPEPSI

Postfix

Observation 1. Remarkably, the 2-stack algorithm computes the same value
if the operator occurs after the two values.

(1L ((23+) (45%*) *) +)

Observation 2. Now all of the parentheses are redundant!

123+ 45**+

Bottom line. Postfix or "reverse Polish" notation. Jan Lukasiewicz

42

Context/Definitions/Summary

drawing
In‘rer‘pr‘efer. PostScript code
* Takes a program as input 100 100 moveto
100 300 lineto _)
300 300 linet:
* Does what that program would do. 300 300 lineto > D
* Simulates a virfual machine. stroke
Compiler. TOY code
Tak . Java code 7102
.
akes a program as input azzs3 > 7203
* Produces a program as output. 9330

* Produces code for a (real) machine.
\ TOY is our proxy for a real machine

Virtual machines you have used

. . . * LFSR
Data Type and Virtual Machine are the same thing! . Stack

* Set of values = machine state. . Toy

* Operations on values = machine operations. " PostScript

* Java Virtual Machine
(another stack machine)

Data Structure.
* Represent data and relationships among data in a data type.

* array, linked list, compound, multiple links per node -

