
1

4.2 Sorting and Searching

3

Whitelist Filter

Blacklist. A list of entities to be rejected for service.
Ex. Deny charges for overdrawn credit cards.

Whitelist. A list of entities to be accepted for service.
Ex. Accept messages only from listed friends.

Whitelist filter. Read a list of strings from a whitelist file,
then print out all strings from standard input that are in the whitelist.

alice@home
bob@office
carl@beach
dave@boat

.

.

.
bob@office
carl@beach
marvin@spam
bob@office
bob@office
mallory@spam
dave@boat
eve@airport
alice@home
.
.
.

.

.

.
bob@office
carl@beach
bob@office
bob@office
dave@boat
alice@home
.
.
.

whitelist

standard input
output

message contents
omitted for simplicity

4

Search Client: Whitelist Filter

Whitelist filter. Read a list of strings from a whitelist file,
then print out all strings from standard input that are in the whitelist.

public class WhiteFilter
{
 public static void main(String[] args)
 {
 In in = new In(args[0]);
 String[] words;
 // Fill words[] with strings from In (stay tuned).
 while (!StdIn.isEmpty())
 {
 String key = StdIn.readString();
 if (search(key, words) != -1)
 StdOut.println(key);
 }
 }
}

% more whitelist.txt
alice@home
bob@office
carl@beach
dave@boat

% more test.txt
bob@office
carl@beach
marvin@spam
bob@office
bob@office
mallory@spam
dave@boat
eve@airport
alice@home

% java WhiteFilter list.txt < test.txt
bob@office
carl@beach
bob@office
bob@office
dave@boat
alice@home

5

Sequential Search: Java Implementation

Scan through array, looking for key.
• search hit: return array index
• search miss: return -1

public static int search(String key, String[] a)
{
 for (int i = 0; i < a.length; i++)
 if (a[i].compareTo(key) == 0) return i;
 return -1;
}

TEQ on Searching 1

A credit card company needs to whitelist 10 million customer accounts,
processing 1000 transactions per second.
Using sequential search, what kind of computer is needed?

A. Toaster
B. Cellphone
C. Your laptop
D. Supercomputer
E. Google server farm

6

7

Binary Search

8

Twenty Questions

Intuition. Find a hidden integer.

9

Binary Search

Idea:
• Sort the array (stay tuned)
• Play “20 questions” to determine the index associated with a given key.

Ex. Dictionary, phone book, book index, credit card numbers, …

Binary search.
• Examine the middle key.
• If it matches, return its index.
•Otherwise, search either the left or right half.

10

Binary Search: Java Implementation

Invariant. Algorithm maintains a[lo] ≤ key ≤ a[hi-1].

Java library implementation: Arrays.binarySearch()

public static int search(String key, String[] a)
{
 return search(key, a, 0, a.length);
}

public static int search(String key, String[] a, int lo, int hi)
{
 if (hi <= lo) return -1;
 int mid = lo + (hi - lo) / 2;
 int cmp = a[mid].compareTo(key);
 if (cmp > 0) return search(key, a, lo, mid);
 else if (cmp < 0) return search(key, a, mid+1, hi);
 else return mid;
}

11

Binary Search: Mathematical Analysis

Analysis. To binary search in an array of size N: do one comparison, then
binary search in an array of size N / 2.

 N → N / 2 → N / 4 → N / 8 → … → 1

Q. How many times can you divide a number by 2 until you reach 1?
A. log2 N.

1
2 → 1

4 → 2 → 1
8 → 4 → 2 → 1

16 → 8 → 4 → 2 → 1
32 → 16 → 8 → 4 → 2 → 1

64 → 32 → 16 → 8 → 4 → 2 → 1
128 → 64 → 32 → 16 → 8 → 4 → 2 → 1

256 → 128 → 64 → 32 → 16 → 8 → 4 → 2 → 1
 512 → 256 → 128 → 64 → 32 → 16 → 8 → 4 → 2 → 1

1024 → 512 → 256 → 128 → 64 → 32 → 16 → 8 → 4 → 2 → 1

TEQ on Searching 2

A credit card company needs to whitelist 10 million customer accounts,
processing 1 thousand transactions per second.
Using binary search, what kind of computer is needed?

A. Toaster
B. Cellphone
C. Your laptop
D. Supercomputer
E. Google server farm

12

Sorting

14

TEQ on Sorting 0

Q. What's the fastest way to sort 1 million 32-bit integers?

15

Sorting

Sorting problem. Rearrange N items in ascending order.

Applications. Binary search, statistics, databases, data compression,
bioinformatics, computer graphics, scientific computing, (too numerous to
list) ...

Hanley

Haskell

Hauser

Hayes

Hong

Hornet

Hsu

Hauser

Hong

Hsu

Hayes

Haskell

Hanley

Hornet

16

Insertion Sort

17

Insertion sort.
• Brute-force sorting solution.
•Move left-to-right through array.
• Insert each element into final position by

exchanging it with larger elements to its left, one-by-one.

Insertion Sort

18

Insertion sort.
• Brute-force sorting solution.
•Move left-to-right through array.
• Exchange next element with larger elements to its left, one-by-one.

Insertion Sort

19

Insertion Sort: Java Implementation

public class Insertion
{

 public static void sort(String[] a)
 {
 int N = a.length;
 for (int i = 1; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j-1].compareTo(a[j]) > 0)
 exch(a, j-1, j);
 else break;
 }

 private static void exch(String[] a, int i, int j)
 {
 String swap = a[i];
 a[i] = a[j];
 a[j] = swap;
 }
}

20

Insertion Sort: Empirical Analysis

Observation. Number of comparisons depends on input family.
• Descending: ~ N 2 / 2.
• Random: ~ N 2 / 4.
• Ascending: ~ N.

0.1000

1.0000

10.0000

100.0000

1000.0000

10000.0000

100000.0000

1000000.0000

3 166668.667 333334.333 500000

Co
m

pa
rs

io
ns

 (m
ill

io
ns

)

Input Size

Descendng
Random
Ascending

21

Insertion Sort: Mathematical Analysis

Worst case. [descending]
• Iteration i requires i comparisons.
• Total = (0 + 1 + 2 + ... + N-1) ~ N 2 / 2 compares.

Average case. [random]
• Iteration i requires i / 2 comparisons on average.
• Total = (0 + 1 + 2 + ... + N-1) / 2 ~ N 2 / 4 compares

E F G H I J D C B A

A C D F H J E B I G

i

i

22

Insertion Sort: Scientific Analysis

Hypothesis: Running time is ~ a N b seconds

Initial experiments:

Doubling hypothesis:
• b = lg 4 = 2, so running time is ~ a N 2

• checks with math analysis
• a ≈ 23 / 800002 = 3.5 × 10-9

Refined hypothesis: Running time is ≈ 3.5 × 10-9 N 2 seconds

5.6 seconds400 million40,000

1.5 seconds99 million20,000

0.43 seconds25 million10,000

0.13 seconds6.2 million5,000

23 seconds

TimeComparisonsN

1600 million80,000

3.7

3.5

3.3

4.1

Ratio

• Data source: N random numbers between 0 and 1.

• Machine: Apple G5 1.8GHz with 1.5GB
• Timing: Skagen wristwatch.

23

Insertion Sort: Scientific Analysis (continued)

Refined hypothesis: Running time is ≈ 3.5 × 10-9 N 2 seconds

Prediction: Running time for N = 200,000
 should be 3.5 × 10-9 × 4 × 1010 ≈ 140 seconds

Observation:

Observation matches prediction and validates refined hypothesis.

145 seconds200,000

TimeN

TEQ on Sorting 1

A credit card company uses insertion sort to sort 10 million customer
account numbers, for use in whitelisting with binary search. What kind of
computer is needed?

A. Toaster
B. Cellphone
C. Your laptop
D. Supercomputer
E. Google server farm

24

25

Insertion Sort: Lesson

Lesson. Supercomputer can't rescue a bad algorithm.

1 second

1 day

Million

instant

instant

Thousand BillionComparisons
Per SecondComputer

3 centuries107laptop

2 weeks1012super

26

Moore's Law

Moore's law. Transistor density on a chip doubles every 2 years.

Variants. Memory, disk space, bandwidth, computing power per $.

http://en.wikipedia.org/wiki/Moore's_law

27

Moore's Law and Algorithms

Quadratic algorithms do not scale with technology.
•New computer may be 10x as fast.
• But, has 10x as much memory so problem may be 10x bigger.
•With quadratic algorithm, takes 10x as long!

Lesson. Need linear (or linearithmic) algorithm to keep pace with Moore's law.

“Software inefficiency can always outpace
 Moore's Law. Moore's Law isn't a match
 for our bad coding.” – Jaron Lanier

28

Mergesort

29

Mergesort

Mergesort.
• Divide array into two halves.
• Recursively sort each half.
•Merge two halves to make sorted whole.

30

Mergesort: Example

31

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

was

was

was

32

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently? Use an auxiliary array.

String[] aux = new String[N];
// Merge into auxiliary array.
int i = lo, j = mid;
for (int k = 0; k < N; k++)
{
 if (i == mid) aux[k] = a[j++];
 else if (j == hi) aux[k] = a[i++];
 else if (a[j].compareTo(a[i]) < 0) aux[k] = a[j++];
 else aux[k] = a[i++];
}

// Copy back.
for (int k = 0; k < N; k++)
 a[lo + k] = aux[k];

33

public class Merge
{
 public static void sort(String[] a)
 { sort(a, 0, a.length); }

 // Sort a[lo, hi).
 public static void sort(String[] a, int lo, int hi)
 {
 int N = hi - lo;
 if (N <= 1) return;

 // Recursively sort left and right halves.
 int mid = lo + N/2;
 sort(a, lo, mid);
 sort(a, mid, hi);

 // Merge sorted halves (see previous slide).
 }

}

Mergesort: Java Implementation

lo mid hi

10 11 12 13 14 15 16 17 18 19

34

Analysis. To mergesort array of size N, mergesort two subarrays
of size N / 2, and merge them together using ≤ N comparisons.

T(N)

T(N / 2)T(N / 2)

T(N / 4)T(N / 4)T(N / 4) T(N / 4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

N

T(N / 2k)

2 (N / 2)

4 (N / 4)

N / 2 (2)

.

.

.

log2 N

N log2 N

we assume N is a power of 2

Mergesort: Mathematical Analysis

35

Mergesort: Mathematical Analysis

Mathematical analysis.

Validation. Theory agrees with observations.

N log2 Naverage

1/2 N log2 N

N log2 N

comparisonsanalysis

worst

best

1,279 million1,216 million50 million

485 million460 million20 million

133 thousand

predictedactualN

120 thousand10,000

36

Mergesort: Scientific Analysis

Hypothesis. Running time is ~ c N lg N seconds

Initial experiments:

• c ≈ 3.2 / (4 × 106 × 32) = 2.5 × 10-8

Refined hypothesis. Running time is 2.5 × 10-7 N lg N seconds.
Prediction: Running time for N = 20,000,000
 should be about 2.5 × 10-8 × 2 × 107 × 35 ≈ 17.5 seconds

Observation:

Observation matches prediction and validates refined hypothesis.

17.5 sec20 million

TimeN

3.22 sec4 million

3.25 sec4 million

3.13 sec

TimeN

4 million

TEQ on Sorting 2

A credit card company uses mergesort to sort 10 million customer account
numbers, for use in whitelisting with binary search. What kind of computer
is needed?

A. Toaster
B. Cellphone
C. Your laptop
D. Supercomputer
E. Google server farm

37 38

Mergesort: Lesson

Lesson. Great algorithms can be more powerful than supercomputers.

N = 1 billion

2 weeks

3 centuries

Insertion MergesortComparisons
Per SecondComputer

3 hours107laptop

instant1012super

39

Longest Repeated Substring

40

Longest repeated substring. Given a string, find the longest substring that
appears at least twice.

Brute force.
• Try all indices i and j for start of possible match.
• Compute longest common prefix for each pair (quadratic+).

Applications. Bioinformatics, cryptography, …

Redundancy Detector

a a c a a g t t t a c a a g c

i j

a a c a a g t t t a c a a g c

LRS application: patterns in music

Music is characterized by its repetitive structure

41

Mary Had a Little Lamb

Fur Elise

source: http://www.bewitched.com/match/

LRS applications: patterns in sequences

Repeated sequences in real-world data are causal.

Ex 1. Digits of pi
•Q. are they “random”?
•A. No, but we can’t tell the difference
• Ex. Length of LRS in first 10 million digits is 14

Ex 2. Cryptography
• Find LRS
•Check for “known” message header identifying place, date, person, etc.
• Break code

Ex 3. DNA
•Find LRS
• Look somewhere else for causal mechanisms
• Ex. Chromosome 11 has 7.1 million nucleotides

42

43

Longest repeated substring. Given a string, find the longest substring that
appears at least twice.

Brute force.
• Try all indices i and j for start of possible match.
• Compute longest common prefix (LCP) for each pair

Analysis.
• all pairs: 1 + 2 + ... + N ~ N2/2 calls on LCP
• too slow for long strings

Brute-force solution

a a c a a g t t t a c a a g c

i j

a a c a a g t t t a c a a g c

44

Longest Repeated Substring: A Sorting Solution

2. Sort suffixes to bring
 repeated substrings together1. Form suffixes

3. Compute longest prefix
 between adjacent suffixes

45

Longest Repeated Substring: Java Implementation

Suffix sorting implementation.

Longest common prefix: lcp(s, t).
• longest string that is a prefix of both s and t
• Ex: lcp("acaagtttac", "acaagc") = "acaag".
• easy to implement (you could write this one).

Longest repeated substring. Search only adjacent suffixes.

int N = s.length();
String[] suffixes = new String[N];
for (int i = 0; i < N; i++)
 suffixes[i] = s.substring(i, N);
Arrays.sort(suffixes);

String lrs = "";
for (int i = 0; i < N-1; i++)
{
 String x = lcp(suffixes[i], suffixes[i+1]);
 if (x.length() > lrs.length()) lrs = x;
}

46

Java substring operation

Memory representation of strings.

•t = s.substring(5, 15);

•A String is an address and a length.
• Characters can be shared among strings.
• substring() computes address, length (instead of copying chars).

Consequences.
• substring() is a constant-time operation (instead of linear).
• Creating suffixes takes linear space (instead of quadratic).
• Running time of LRS is dominated by the string sort.

a

D0

a

D1

c

D2

a

D3

a

D4

g

D5

t

D6

t

D7

t

D8

a

D9

c

DA

a

DB

D0

A0

15

A1
s

lengthaddress

D5

B0

10

B1
t

a

DC

g

DD

c

DE

s = "aacaagtttacaagc";

t = s.substring(5, 15);

TEQ on Sorting 3

Q. Four researchers A, B, C and D are looking for long repeated
subsequences in a genome with over 1 billion characters.
A. has a grad student do it.
B. uses brute force (check all pairs) solution.
C. uses sorting solution with insertion sort.
D. uses sorting solution with mergesort.

Which one is more likely to find a cancer cure?

47 48

Longest Repeated Substring: Empirical Analysis

Lesson. Sorting to the rescue; enables new research.

Many, many, many other things enabled by fast sort and search!

2160.25 sec37 sec18,369Amendments

730.14 sec0.6 sec2,162 LRS.java

581.0 sec3958 sec191,945Aesop's Fables

12,56761 sec2 months †7.1 million Chromosome 11

84 sec

34 sec

7.6 sec

Suffix Sort

144 months †10 million Pi

1120 days †4.0 million Bible

7943 hours †1.2 million Moby Dick

Brute LengthCharactersInput File

 † estimated

49

Summary

Binary search. Efficient algorithm to search a sorted array.

Mergesort. Efficient algorithm to sort an array.

Applications. Many, many, many things are enabled by fast sort and search.

