
File systems and databases: managing information

•  file: sequence of bytes stored on a computer
–  content is arbitrary; any structure is imposed by the creator of the file,

not by the operating system

•  file system: software that provides hierarchical storage and
organization of files, usually on a single computer
–  part of the operating system

•  database: integrated collection of logically related records
–  data is organized and structured for efficient systematic access

•  database system: software that provides efficient access to
information in a database
–  not usually part of an operating system

File Systems: managing stored information

•  logical structure: users and programs see a
 hierarchy of folders (or directories) and files

–  a folder contains references to folder and files
–  "root" folder ultimately leads to all others
–  a file is just a sequence of bytes

contents determined and interpreted by programs, not the operating system
–  a folder is a special file that contains names of other folders & files

plus other information like size, time of change, etc.
contents are completely controlled by the operating system

•  physical structure: disk drives operate in tracks, sectors, etc.
–  other storage devices have other physical properties

•  the operating system converts between these two views
–  does whatever is necessary to maintain the file/folder illusion
–  hides physical details so that programs don't depend on them
–  presents a uniform interface to disparate physical media

•  the "file system" is the part of the operating system that does
this conversion

Disks
•  a place to store information when the power is turned off
•  usually based on magnetic surfaces, rotating machinery
•  logical / functional structure: folders (directories) and files

–  your information: papers, mail, music, web page, …
–  programs and their data: Firefox, Word, iTunes, …
–  operating system(s): Windows, MacOS, Unix/Linux, ...
–  bookkeeping info: where things are physically

How the file system converts logical to physical

•  disk is physically organized into sectors, or blocks of bytes
–  each sector is a fixed number of bytes, like 512 or 1024 or …)
–  reading and writing always happens in sector-sized blocks

•  each file occupies an integral number of blocks
–  files never share a block
–  some space is wasted: a 1-byte file wastes all but 1 byte of the block

•  if a file is bigger than one block, it occupies several blocks
–  the blocks are not necessarily adjacent on the disk

•  need a way to keep track of the blocks that make up the file

•  this is usually done by a separate "file allocation table" that lists
the blocks that make up each file
–  this table is stored on disk too so it persists when machine is turned off
–  lots of ways to implement this

Converting logical to physical, continued

•  every block is part of some file, or reserved by operating system,
or unused

•  "file allocation table" keeps track of blocks
–  by chaining/linking them together

first block of a file points to second, second points to third, etc.
last block doesn't point to a successor (because it doesn't have one)

–  or (much more common) by some kind of table or array
 that keeps track of related blocks

•  also keeps track of unused blocks
–  disk starts out with most blocks unused ("free")

some are reserved for file allocation table, etc.
–  as a file grows, blocks are removed from the unused list and attached to

the list for the file:
to grow a file, remove a block from the list of unused blocks
and add it to the blocks for the file

Converting logical to physical: directories

•  a directory / folder is a file
–  stored in the same file system
–  uses the same mechanisms

•  but it contains information about other files and directories

•  the directory entry for a file tells where to find the blocks

•  the directory entry also contains other info about the file
–  name (e.g., midterm.doc)
–  size in bytes, date/time of changes, access permissions
–  whether it's an ordinary file or a directory

•  the file system maintains the info in a directory
–  very important to keep directory info consistent
–  application programs can change it only indirectly / implicitly

Finding files; root directory

•  all files are ultimately accessible from the "root" directory/folder
–  e.g., C: on Windows, / on Unix and Mac

•  to access the contents of a file named
 C:\Program Files\Adobe\Acrobat 8.0\Acrobat\acrobat.exe

–  read the blocks of C:, look for an entry with name "Program Files"
–  read the blocks of the Program Files directory, look for "Adobe"
–  read the blocks of Adobe, look for "Acrobat 8.0"
–  read the blocks of Acrobat 8.0, look for "Acrobat"
–  read the blocks of Acrobat, look for "acrobat.exe"
–  read the blocks of acrobat.exe

•  all but the last of these are directories/folders
•  the long name is often called the "path name"

–  since it describes a path through the file system hierarchy

What happens when you say "Open"?

•  search for file in sequence of directories
 as given by components of its name

–  report an error if any component can't be found

•  read blocks of the file as needed
–  using the location information in the file allocation table
 to find the blocks
–  store (some of) them in RAM

What happens when you say "Save"?

•  make sure there's enough space (enough unused blocks)
–  don't want to run out while copying from RAM to disk

•  create a temporary file with no bytes in it
•  copy the bytes from RAM and/or existing file to temporary file:

while (there are still bytes to be copied) {
 get a free block from the unused list
 copy bytes to it until it's full or there are no more bytes to copy
 link it in to the temporary file
}

•  update the directory entry to point to the new file
•  move the previous blocks (of old version) to the unused list

–  or to recycle bin / trash

What happens when you remove a file?

•  move the blocks of the file to the unused list
•  set the directory entry so it doesn't refer to any block

–  set it to zero, maybe

•  recycle bin
–  recycle bin is just another directory
–  removing a file just puts the name, location info, etc., in that directory

instead

•  "emptying the trash" moves blocks into unused list
–  removes entry from Recycle / Trash directory

•  why "removing" a file isn't enough
–  usually only changes a directory entry
–  often recoverable by simple guesses about directory entry contents
–  file contents are often still there even if directory entry is cleared

Network file systems

•  software system for accessing remote files across networks

•  user programs access files and folders as if they are on the
local machine

•  operating system converts these into requests to ship
information to/from another machine across a network

•  there has to be a program on the other end to respond to
requests

•  "mapping a network drive" or "mounting your H: drive" sets up
the connections

•  subsequent reads and writes go through the network instead of
the local disk

Databases and database systems

•  informally, database is a large collection of information
•  more formally, an organized collection of logically related records
•  data items have fixed set of attributes

–  name, address, phone number, gender, income, social security number, ...
•  each record has these attributes for a single person / instance

•  database system supports
–  very efficient search for records with specific properties

all the women in 08540 with income > $100K
–  high volumes of traffic with concurrent access and update

"ACID": atomic, consistent, isolated, durable
•  major examples

–  Oracle (owns Peoplesoft)
–  MySQL (open source, now owned by Sun, in turn owned by Oracle...)
–  SQLite (open source, in devices like iPhone)

