


Topics 

0 Synchronization Problems 

0 Producer-Consumer Problem 

0 Readers-Writers Problem 

0 Semaphores and their Implementation 

0 Data Races 

0 Shared Memory Patterns 

0 Parallelizing Computations 

0 Partitioning and Problem Decomposition 

0 Loop Parallelism 

 



Producer-Consumer Problem 

• Problem description 

– A producer: in an infinite loop and produce one item 
per iteration into the buffer 

– A consumer: in an infinite loop and consumes one item 
per iteration from the buffer 

– Buffer size:  can only hold at most N items 

– Need to make sure that 
– Producer does not try to add data into the buffer when it is full 

– Consumer does not try to remove data from an empty buffer 



Producer-Consumer Problem 

int counter; //initialize to 0 
  // Producer 
   repeat 
1 read the counter value 
2 if(Counter < MAX_COUNT) {  
3     increment the counter; 
4     update the counter with the 

    incremented value; 
5  Store a value into the buffer 
6     //ERROR if  buffer full 

} 
else{ 

7     wait 
} 

    Until YY says stop 

  // consumer    
   repeat 
1 read the counter value; 
2 if(Counter > 0) { 
3 decrement counter; 
4     update the counter with the 

    incremented value; 
5     consume a value from buffer 
6 //ERROR if buffer empty 

} 
else{ 

7     wait 
} 

    Until YY says stop 

 

 

 



Producer-Consumer Problem 

int counter; //initialize to 0 
Mutex m; 
  // Producer 
   repeat 
1 Mutex_Lock(&m); 
2 read the counter value 
3 if(Counter < MAX_COUNT) {  
4     increment the counter; 
5     update the counter with the 

    incremented value; 
6 Store a value into the buffer 
7     //ERROR if  buffer full 
8     Mutex_Unlock(&m) 

} 
else{ 

9     wait 
10 } 
    Until YY says stop 

  // consumer    
   repeat 
1 Mutex_lock(&m); 
2 read the counter value; 
3 if(Counter > 0) { 
4 decrement counter; 
5     update the counter with the 

    incremented value; 
6     consume a value from buffer 
7 //ERROR if buffer empty 
8 Mutex_Unlock(&m) 

} 
else{ 

9     wait 
} 

    Until YY says stop 

 

 

 



Producer-Consumer Problem 

int counter; //initialize to 0 
Mutex m; 
  // Producer 
   repeat 
1 Mutex_Lock(&m); 
2 read the counter value 
3 if(Counter < MAX_COUNT) {  
4     increment the counter; 
5     update the counter with the 

    incremented value; 
6 Store a value into the buffer 
7     //ERROR if  buffer full 
8     Mutex_Unlock(&m) 

} 
else{ 

9      Mutex_Unlock(&m) 
10      wait 

} 
    Until YY says stop 

  // consumer    
   repeat 
1 Mutex_lock(&m); 
2 read the counter value; 
3 if(Counter > 0) { 
4 decrement counter; 
5     update the counter with the 

    incremented value; 
6     consume a value from buffer 
7 //ERROR if buffer empty 
8 Mutex_Unlock(&m) 

} 
else{ 

9 Mutex_Unlock(&m) 
10     wait 

} 
    Until YY says stop 

 

 

 



Semaphores 

0 A synchronization variable that takes on positive integer 
values 

0 Two operations: 

0 P(semaphore): an atomic operation that waits for semaphore 
to become greater than zero, then decrements by 1 (Dutch: 
proberen) 

0 V(semaphore): an atomic operation that increments 
semaphore by 1 (Dutch: verhogen) 



Producer-Consumer Problem 

Semaphore Full = 0 

Semaphore Empty = BUFFER_SIZE 

Mutex m; //Equivalent to Semaphore m = 1 

 

  // Producer  

   repeat 

1 P(&empty) 

2 Mutex_lock(&m); 

3 Enqueue new item in buffer 

4 Mutex_Unlock(&m); 

5 V(&full); 

   Until YY says stop 

 

 

 

 

  // consumer 

    

   repeat 

1 P(&full) 

2 Mutex_lock(&m); 

3 Deque item from buffer 

4 Mutex_Unlock(&m); 

5 V(&empty); 

    Until YY says stop 

 

 

 



Readers-Writers Problem 

R 
R 

R 

W 

A Shared Database 
• Two classes of users: 
• Readers – never modify database 
• Writers – read and modify database 

• Is using a single lock on the whole database sufficient? 
• Like to have many readers at the same time 
• Only one writer at a time 



Readers-Writers Problem 

0 Deals with situations in which many threads much access 
the same shared memory at one time 

0 No thread may access the shared object for reading or 
writing while another thread is writing to it 

0 Concurrent reads are allowed 

0 First Readers-Writers problem: No reader shall be kept 
waiting if the shared object is currently open for reading 

0 Second Readers-Writers problem: No writer, once added to 
the queue, shall be kept waiting longer than absolutely 
necessary 



Readers-Writers Problem 

0 Basic structure of a solution: 
0 Reader() 

   Wait until no writers 

   Access data base 

   Check out – wake up a waiting writer 

0 Writer() 

   Wait until no active readers or writers 

   Access database 

   Check out – wake up waiting readers or writer 

0 State variables (Protected by a lock called “lock”): 

0 int AR: Number of active readers; initially = 0 

0 int WR: Number of waiting readers; initially = 0 

0 int AW: Number of active writers; initially = 0 

0 int WW: Number of waiting writers; initially = 0 

0 Condition okToRead = NIL 

0 Condition okToWrite = NIL 

 



Readers-Writers Problem 

Reader() { 
 // First check self into system 
 lock.Acquire(); 

  while ((AW + WW) > 0) { // Is it safe to read? 
  WR++; // No. Writers exist 
  okToRead.wait(&lock); // Sleep on cond var 
  WR--; // No longer waiting 
 } 

  AR++;  // Now we are active! 
 lock.release(); 

  // Perform actual read-only access 
 AccessDatabase(ReadOnly); 

  // Now, check out of system 
 lock.Acquire(); 
 AR--;  // No longer active 
 if (AR == 0 && WW > 0) // No other active readers 
  okToWrite.signal(); // Wake up one writer 
 lock.Release(); 
} 



Readers-Writers Problem 
 Writer() { 
 // First check self into system 
 lock.Acquire(); 

  while ((AW + AR) > 0) { // Is it safe to write? 
  WW++; // No. Active users exist 
  okToWrite.wait(&lock);// Sleep on cond var 
  WW--; // No longer waiting 
 } 

  AW++;  // Now we are active! 
 lock.release(); 

  // Perform actual read/write access 
 AccessDatabase(ReadWrite); 

  // Now, check out of system 
 lock.Acquire(); 
 AW--;  // No longer active 
 if (WW > 0){ // Give priority to writers 
  okToWrite.signal(); // Wake up one writer 
 } else if (WR > 0) { // Otherwise, wake reader 
  okToRead.broadcast(); // Wake all readers 
 }  
 lock.Release(); 
} 

 



Implementation of Semaphores 

0 No existing hardware implements semaphores directly 

0 Semaphores are built up in software using some lower-
level synchronization primitive provided by hardware 

0 Uniprocessor solution: Disable interrupts 
 

typedef struct { 

 int count; 

queue q; /* queue of threads waiting on this 

semaphore */ 

} Semaphore; 



Implementation of Semaphores 

void P(Semaphore s){ 

Disable interrupts; 

if (s->count > 0) { 

s->count -= 1; 

Enable interrupts; 

return; 

} 

Add(s->q, current 

thread); 

sleep(); // re-dispatch 

Enable interrupts; 

} 

void V(Semaphore s){ 

Disable interrupts; 

if (isEmpty(s->q)) { 

s->count += 1; 

} else { 

thread = RemoveFirst(s-

>q); 

wakeup(thread); /* put 

thread on the ready queue 

*/ 

} 

Enable interrupts; 

} 



Implementation of Semaphores 

0 Multiprocessor Solution: 

0 Can’t turn off all other processors 

0 Can’t just turn off interrupts to get low-level mutual exclusion 

0 Most CISC Machines provide some sort of atomic read-
modify-write instruction 

0 test&set 

0 swap 

0 compare&swap 



Implementation of Semaphores 

0 Modern RISC machines do not provide read-modify-write 
instructions 

0 Instead they provide a weaker mechanism that does not 
guarantee atomicity but detects interference 
0 load-linked instruction (ldl): Loads a word from memory and 

sets a per-processor flag associated with that word (usually 
stored in the cache) 

0 store operations to the same memory location (by any 
processor) reset all processor’s flags associated with that 
word. 

0 store-conditionally instruction (stc): Stores a word iff the 
processor’s flag for the word is still set; indicates success or 
failure. 



Implementation of Semaphores 

0 Atomic Read-Modify-Write Example in MIPS 

atomic_inc: 

 ll $t0, 0($a0)    # load linked 

 addiu $t1, $t0, 1  # increment 

 sc $t1, 0($a0)    # store cond'l 

 beqz $t1, atomic_inc   

        # loop if failed 



Different Implementations for Mutual 
Exclusion 

Using ldl/stc 

 

int lock; 

.. 

while (ldl(&lock) != 0 || 

!stc(&lock, 1)); 

.. 

critical section 

.. 

lock = 0; 

Using Test And Set 

 

int lock; 

.. 

while (TAS(&lock, 1) != 0); 

.. 

critical section 

.. 

lock = 0; 



Using ldl/stc to Implement Semaphores 

typedef struct { 

int lock;  /*Initially 0*/  

int count; 

queue q; /* queue of threads waiting on this 

semaphore */ 

} Semaphore; 



Using ldl/stc to Implement Semaphores 

void P(Semaphore s) { 

Disable interrupts; 

while (ldl(s->lock) != 0 || 

!stc(s->lock, 1)); 

if (s->count > 0) { 

s->count -= 1; 

s->lock = 0; 

Enable interrupts; 

return; 

} 

Add(s->q, current thread); 

s->lock = 0; 

sleep(); /* re-dispatch */ 

Enable interrupts; 

} 

void V(Semaphore s){ 

Disable interrupts; 

while (ldl(s->lock) != 0 || 

!stc(s->lock, 1)); 

if (isEmpty(s->q)) { 

s->count += 1; 

} else { 

thread = RemoveFirst(s->q); 

wakeup(thread); /* put 

thread on the ready queue 

*/ 

} 

s->lock = 1; 

Enable interrupts; 

} 



What is a Data Race? 

0 Two concurrent accesses to a memory location at least one of 
which is a write. 

0 Example: Data race between a read and a write 
 

int x = 1; 

Parallel.Invoke(  

                 () => { x = 2; }, 

                 () => { System.Console.WriteLine(x); } 

               ); 

0 Outcome nondeterministic or worse 

0 may print 1 or 2, or arbitrarily bad things on a relaxed memory 
model 

writes x 

reads x 



Data Races and Happens-Before 

0 Example of a data race with two writes: 
 

int x = 1; 

Parallel.Invoke( () => { x = 2; }, 

                 () => { x = 3;  }  ); 

System.Console.WriteLine(x); 

 

0 We visualize the ordering of memory accesses with a 
happens-before graph: 
 

There is no path between  
(write 2 to x) and (write 3 to x), 
thus they are concurrent, 
thus they create a data race 
 
(note:  the read is not in a data race) 

 

write 2 to x write 3 to x 

write 1 to 
x 

read 
x 



Quiz: Where are the data races? 

Parallel.For(1,2,  
i => { 
    x = a[i]; 
}); 

Parallel.For(1,2,  
i => { 
    a[i] = x; 
}); 

Parallel.For(1,2,  
i => { 
    a[i] = a[i+1]; 
}); 



Quiz: Where are the data races? 

Parallel.For(1,2,  
i => { 
    x = a[i]; 
}); 

reads 
a[0] 
writes x 

reads 
a[1] 
writes x race 

Parallel.For(1,2,  
i => { 
    a[i] = x; 
}); 

reads x 

writes a[0] 

reads x 

writes a[1] 

Parallel.For(1,2,  
i => { 
    a[i] = a[i+1]; 
}); 

reads 
a[2] 
writes a[1] 

reads 
a[3] 
writes a[2] 

Race between two 
writes. 

Race between a read 
and a write. 

No Race between 
two reads. 



Data Races can be hard to spot 

0 Code looks fine... at first. 

Parallel.For(0, 10000,  
    i => {a[i] = new Foo();}) 



Data Races can be hard to spot 

0 Problem: we have to follow calls... even if they look harmless 
at first (like a constructor). 

Parallel.For(0, 10000,  
    i => {a[i] = new Foo();}) 

class Foo { 
 private static int counter; 
 private int unique_id; 
 public Foo() 
       { 
  unique_id = counter++; 
       } 
} 



Avoiding Data Races 

0 The three most frequent ways to avoid data races on a 
variable 

0 Make it isolated 

0 variable is only ever accessed by one task 

0 Make it immutable 

0 variable is only ever read 

0 Make it synchronized 

0 Use a lock to arbitrate concurrent accesses 



Programming with Shared Memory 

0 Keep abstraction level HIGH 

0 Temptation: ad-hoc parallelization 

0 Add tasks or parallel loops all over the code 

0 Discover data races/deadlocks, fix them one-by-one 

0 Problem (depending on the programmer): 

0 Complexity adds up quickly 

0 Easy to get cornered by deadlocks, atomicity violations, 
data races 

0 These bugs are often hard to expose 



Programming with Shared Memory 

0 Use well-understood, simple high-level patterns 

 Architectural Patterns 
Localize shared state 

 
 
 

Replication Patterns 
Make copies of shared state 

 

Producer-Consumer 
Immutable Data 

Double Buffering 

Worklist 

Pipeline 



Producer-Consumer Pattern 

0 Also called the Bounded Buffer 
problem 

 

0 One or more producers add 
items to the buffer 

 

0 One or more consumers 
remove items from the buffer 

Buffer 

Producer 

Producer 

Producer 

Consumer 

Consumer Consumer 



Producer-Consumer Pattern 

1. Item is local to Producer 
before insertion into buffer 

2. Item is local to Consumer 
after removal from buffer 

3. What about buffer? 

0 Buffer is thread-safe 

0 Blocks when full/empty 

Buffer 

Producer 

Producer 

Producer 

Consumer 

Consumer Consumer 



Pipeline Pattern 

0 Generalization of Producer-
Consumer 

0 One or more workers per stage 

0 First stage = Producer 

0 Last stage = Consumer 

0 Middle stages consume and 
produce 

Buffer 

Stage 1 
Worker 

Stage 1 
Worker 

Stage 1 
Worker 

Stage 2 
Worker 

Stage 2 
Worker 

Stage 2 
Worker 

Buffer 

Stage 3 
Worker 

Stage 3 
Worker 

Stage 3 
Worker 

36 



Worklist Pattern 

0 Worklist contains items to process 

0 Workers grab one item at a time 

0 Workers may add items back to worklist 

0 No data races: items are local to workers 

Worklist 

Worker Worker Worker 



Immutability 

0 Remember: concurrent reads do not conflict 

0 Idea: never write to shared data 

0 All shared data is immutable (read only) 

0 To modify data, must make a fresh copy first 

0 Copy-On-Write 

 



Parallelizing Computations 

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program
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Decomposition of computation in 
tasks 
Assignment of tasks to processes 

Orchestration of data access, 
communication, synchronization 
Mapping processes to processors 



Partitioning 

0 Identify concurrency and decide at what level to exploit it 

0 Break up computations into tasks to be divided among 
processes 

0 Tasks may become available dynamically 

0 Number of tasks may vary with time 

0 Enough tasks to keep processors busy 

0 Decomposition independent of architecture or 
programming model 

0 Structured approaches usually work well 

0 Remember: Shared memory design patterns 



An Example: 
Decomposition 



Task decomposition 
• Independent coarse-

grained computation 
• Inherent to the algorithm 
• Sequence of statements 

(instructions) that operate 
together as a group 

• Corresponds to some 
logical part of program 

An Example: 
Decomposition 



Task decomposition 
• Parallelism in the 

application 
 

Data decomposition 
• Same computation is 

applied to small data 
chunks derived from a 
large data set 

An Example: 
Decomposition 



Task decomposition 
• Parallelism in the 

application 
Data decomposition 
• Same computation many 

data 
Pipeline decomposition 
• Data assembly lines 
• Producer-consumer 

chains 
• Usually observed in case 

of regular, one-way, mostly 
stable data flow 

An Example: 
Decomposition 



Finding Concurrency Design Space 

0 Programs often naturally 
decompose into tasks 

0 Two common 
decompositions: 

0 Function calls 

0 Distinct loop iterations 

0 Dependence Analysis: 
Given two tasks, how to 
determine if they can 
run in parallel? 



Data Dependence 

0 Assuming statements S1 and S2, S2 is data-dependent on 
S1 if: 

[I(S1) ∩ O(S2)] ∪  [O(S1) ∩ I(S2)] ∪ [O(S1) ∩ O(S2)] ≠ Ø  

Where, 

I(Si) is the set of memory locations read by Si, and 

O(Sj) is the set of memory locations written by Sj 

and there is a feasible runtime execution path from S1 to 
S2 

0 Called Bernstein Condition 



Types of Data Dependence 

0 True dependence 

O(S1) ∩ I (S2) , S1-> S2 and S1 writes something read by S2 

 

0 Anti-dependence 

I(S1) ∩ O(S2) , mirror relationship of true dependence 

 

0 Output dependence 

O(S1) ∩ O(S2), S1->S2 and both write the same memory 
location 



Control Dependence 

0 There is a control 
dependence between two 
statements S1 and S2 if 

0 S1 could be possibly 
executed before S2 

0 The outcome of S1 
execution will determine 
whether S2 will be 
executed 

 

A: while(node){ 

B: node = node->next; 

C: res = work(node); 

D:  write(res); 

     } 

  



Loop Parallelism Patterns 

0 Many programs are expressed using iterative constructs 

0 Loops are a major part of most programs  

0 Loop parallelism especially useful when code cannot be 
massively restructured 

0 Different techniques: 

0 DOALL 

0 DOACROSS 

0 DSWP (Decoupled Software Pipelining) 



DOALL 

Consider the following loop 

 

int arr[10], op[10]; 

int i = 0; 

while(i<10) { 

 op[i] = arr[i]*arr[i]; (A) 

       i++; 

} 

i=0 i=1 i=2 i=3 i=9 



With Inter-Iteration Dependences? 

Consider the following loop 

 

A: while(node){ 

B: node = node->next; 

C: res = work(node); 

D:  write(res); 

     } 

 

Here, work may modify list 

Program 
Dependence Graph 

for the loop 



DOACROSS 

Consider the following loop 

 

A: while(node){ 

B: node = node->next; 

C: res = work(node); 

D:  write(res); 

     } 

Here, work may modify list 
 

Communication latency =  

1 cycle/iteration 



Decoupled Software Pipelining (DSWP) 

Consider the following loop 

 

A: while(node){ 

B: node = node->next; 

C: res = work(node); 

D:  write(res); 

     } 

Here, work may modify list 
 

Communication latency =  

1 cycle/iteration 


