

Topics

0 Synchronization Problems

0 Producer-Consumer Problem

0 Readers-Writers Problem

0 Semaphores and their Implementation

0 Data Races

0 Shared Memory Patterns

0 Parallelizing Computations

0 Partitioning and Problem Decomposition

0 Loop Parallelism

Producer-Consumer Problem

• Problem description

– A producer: in an infinite loop and produce one item
per iteration into the buffer

– A consumer: in an infinite loop and consumes one item
per iteration from the buffer

– Buffer size: can only hold at most N items

– Need to make sure that
– Producer does not try to add data into the buffer when it is full

– Consumer does not try to remove data from an empty buffer

Producer-Consumer Problem

int counter; //initialize to 0
 // Producer
 repeat
1 read the counter value
2 if(Counter < MAX_COUNT) {
3 increment the counter;
4 update the counter with the

 incremented value;
5 Store a value into the buffer
6 //ERROR if buffer full

}
else{

7 wait
}

 Until YY says stop

 // consumer
 repeat
1 read the counter value;
2 if(Counter > 0) {
3 decrement counter;
4 update the counter with the

 incremented value;
5 consume a value from buffer
6 //ERROR if buffer empty

}
else{

7 wait
}

 Until YY says stop

Producer-Consumer Problem

int counter; //initialize to 0
Mutex m;
 // Producer
 repeat
1 Mutex_Lock(&m);
2 read the counter value
3 if(Counter < MAX_COUNT) {
4 increment the counter;
5 update the counter with the

 incremented value;
6 Store a value into the buffer
7 //ERROR if buffer full
8 Mutex_Unlock(&m)

}
else{

9 wait
10 }
 Until YY says stop

 // consumer
 repeat
1 Mutex_lock(&m);
2 read the counter value;
3 if(Counter > 0) {
4 decrement counter;
5 update the counter with the

 incremented value;
6 consume a value from buffer
7 //ERROR if buffer empty
8 Mutex_Unlock(&m)

}
else{

9 wait
}

 Until YY says stop

Producer-Consumer Problem

int counter; //initialize to 0
Mutex m;
 // Producer
 repeat
1 Mutex_Lock(&m);
2 read the counter value
3 if(Counter < MAX_COUNT) {
4 increment the counter;
5 update the counter with the

 incremented value;
6 Store a value into the buffer
7 //ERROR if buffer full
8 Mutex_Unlock(&m)

}
else{

9 Mutex_Unlock(&m)
10 wait

}
 Until YY says stop

 // consumer
 repeat
1 Mutex_lock(&m);
2 read the counter value;
3 if(Counter > 0) {
4 decrement counter;
5 update the counter with the

 incremented value;
6 consume a value from buffer
7 //ERROR if buffer empty
8 Mutex_Unlock(&m)

}
else{

9 Mutex_Unlock(&m)
10 wait

}
 Until YY says stop

Semaphores

0 A synchronization variable that takes on positive integer
values

0 Two operations:

0 P(semaphore): an atomic operation that waits for semaphore
to become greater than zero, then decrements by 1 (Dutch:
proberen)

0 V(semaphore): an atomic operation that increments
semaphore by 1 (Dutch: verhogen)

Producer-Consumer Problem

Semaphore Full = 0

Semaphore Empty = BUFFER_SIZE

Mutex m; //Equivalent to Semaphore m = 1

 // Producer

 repeat

1 P(&empty)

2 Mutex_lock(&m);

3 Enqueue new item in buffer

4 Mutex_Unlock(&m);

5 V(&full);

 Until YY says stop

 // consumer

 repeat

1 P(&full)

2 Mutex_lock(&m);

3 Deque item from buffer

4 Mutex_Unlock(&m);

5 V(&empty);

 Until YY says stop

Readers-Writers Problem

R
R

R

W

A Shared Database
• Two classes of users:
• Readers – never modify database
• Writers – read and modify database

• Is using a single lock on the whole database sufficient?
• Like to have many readers at the same time
• Only one writer at a time

Readers-Writers Problem

0 Deals with situations in which many threads much access
the same shared memory at one time

0 No thread may access the shared object for reading or
writing while another thread is writing to it

0 Concurrent reads are allowed

0 First Readers-Writers problem: No reader shall be kept
waiting if the shared object is currently open for reading

0 Second Readers-Writers problem: No writer, once added to
the queue, shall be kept waiting longer than absolutely
necessary

Readers-Writers Problem

0 Basic structure of a solution:
0 Reader()

 Wait until no writers

 Access data base

 Check out – wake up a waiting writer

0 Writer()

 Wait until no active readers or writers

 Access database

 Check out – wake up waiting readers or writer

0 State variables (Protected by a lock called “lock”):

0 int AR: Number of active readers; initially = 0

0 int WR: Number of waiting readers; initially = 0

0 int AW: Number of active writers; initially = 0

0 int WW: Number of waiting writers; initially = 0

0 Condition okToRead = NIL

0 Condition okToWrite = NIL

Readers-Writers Problem

Reader() {
 // First check self into system
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?
 WR++; // No. Writers exist
 okToRead.wait(&lock); // Sleep on cond var
 WR--; // No longer waiting
 }

 AR++; // Now we are active!
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.Acquire();
 AR--; // No longer active
 if (AR == 0 && WW > 0) // No other active readers
 okToWrite.signal(); // Wake up one writer
 lock.Release();
}

Readers-Writers Problem
 Writer() {
 // First check self into system
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?
 WW++; // No. Active users exist
 okToWrite.wait(&lock);// Sleep on cond var
 WW--; // No longer waiting
 }

 AW++; // Now we are active!
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.Acquire();
 AW--; // No longer active
 if (WW > 0){ // Give priority to writers
 okToWrite.signal(); // Wake up one writer
 } else if (WR > 0) { // Otherwise, wake reader
 okToRead.broadcast(); // Wake all readers
 }
 lock.Release();
}

Implementation of Semaphores

0 No existing hardware implements semaphores directly

0 Semaphores are built up in software using some lower-
level synchronization primitive provided by hardware

0 Uniprocessor solution: Disable interrupts

typedef struct {

 int count;

queue q; /* queue of threads waiting on this

semaphore */

} Semaphore;

Implementation of Semaphores

void P(Semaphore s){

Disable interrupts;

if (s->count > 0) {

s->count -= 1;

Enable interrupts;

return;

}

Add(s->q, current

thread);

sleep(); // re-dispatch

Enable interrupts;

}

void V(Semaphore s){

Disable interrupts;

if (isEmpty(s->q)) {

s->count += 1;

} else {

thread = RemoveFirst(s-

>q);

wakeup(thread); /* put

thread on the ready queue

*/

}

Enable interrupts;

}

Implementation of Semaphores

0 Multiprocessor Solution:

0 Can’t turn off all other processors

0 Can’t just turn off interrupts to get low-level mutual exclusion

0 Most CISC Machines provide some sort of atomic read-
modify-write instruction

0 test&set

0 swap

0 compare&swap

Implementation of Semaphores

0 Modern RISC machines do not provide read-modify-write
instructions

0 Instead they provide a weaker mechanism that does not
guarantee atomicity but detects interference
0 load-linked instruction (ldl): Loads a word from memory and

sets a per-processor flag associated with that word (usually
stored in the cache)

0 store operations to the same memory location (by any
processor) reset all processor’s flags associated with that
word.

0 store-conditionally instruction (stc): Stores a word iff the
processor’s flag for the word is still set; indicates success or
failure.

Implementation of Semaphores

0 Atomic Read-Modify-Write Example in MIPS

atomic_inc:

 ll $t0, 0($a0) # load linked

 addiu $t1, $t0, 1 # increment

 sc $t1, 0($a0) # store cond'l

 beqz $t1, atomic_inc

 # loop if failed

Different Implementations for Mutual
Exclusion

Using ldl/stc

int lock;

..

while (ldl(&lock) != 0 ||

!stc(&lock, 1));

..

critical section

..

lock = 0;

Using Test And Set

int lock;

..

while (TAS(&lock, 1) != 0);

..

critical section

..

lock = 0;

Using ldl/stc to Implement Semaphores

typedef struct {

int lock; /*Initially 0*/

int count;

queue q; /* queue of threads waiting on this

semaphore */

} Semaphore;

Using ldl/stc to Implement Semaphores

void P(Semaphore s) {

Disable interrupts;

while (ldl(s->lock) != 0 ||

!stc(s->lock, 1));

if (s->count > 0) {

s->count -= 1;

s->lock = 0;

Enable interrupts;

return;

}

Add(s->q, current thread);

s->lock = 0;

sleep(); /* re-dispatch */

Enable interrupts;

}

void V(Semaphore s){

Disable interrupts;

while (ldl(s->lock) != 0 ||

!stc(s->lock, 1));

if (isEmpty(s->q)) {

s->count += 1;

} else {

thread = RemoveFirst(s->q);

wakeup(thread); /* put

thread on the ready queue

*/

}

s->lock = 1;

Enable interrupts;

}

What is a Data Race?

0 Two concurrent accesses to a memory location at least one of
which is a write.

0 Example: Data race between a read and a write

int x = 1;

Parallel.Invoke(

 () => { x = 2; },

 () => { System.Console.WriteLine(x); }

);

0 Outcome nondeterministic or worse

0 may print 1 or 2, or arbitrarily bad things on a relaxed memory
model

writes x

reads x

Data Races and Happens-Before

0 Example of a data race with two writes:

int x = 1;

Parallel.Invoke(() => { x = 2; },

 () => { x = 3; });

System.Console.WriteLine(x);

0 We visualize the ordering of memory accesses with a
happens-before graph:

There is no path between
(write 2 to x) and (write 3 to x),
thus they are concurrent,
thus they create a data race

(note: the read is not in a data race)

write 2 to x write 3 to x

write 1 to
x

read
x

Quiz: Where are the data races?

Parallel.For(1,2,
i => {
 x = a[i];
});

Parallel.For(1,2,
i => {
 a[i] = x;
});

Parallel.For(1,2,
i => {
 a[i] = a[i+1];
});

Quiz: Where are the data races?

Parallel.For(1,2,
i => {
 x = a[i];
});

reads
a[0]
writes x

reads
a[1]
writes x race

Parallel.For(1,2,
i => {
 a[i] = x;
});

reads x

writes a[0]

reads x

writes a[1]

Parallel.For(1,2,
i => {
 a[i] = a[i+1];
});

reads
a[2]
writes a[1]

reads
a[3]
writes a[2]

Race between two
writes.

Race between a read
and a write.

No Race between
two reads.

Data Races can be hard to spot

0 Code looks fine... at first.

Parallel.For(0, 10000,
 i => {a[i] = new Foo();})

Data Races can be hard to spot

0 Problem: we have to follow calls... even if they look harmless
at first (like a constructor).

Parallel.For(0, 10000,
 i => {a[i] = new Foo();})

class Foo {
 private static int counter;
 private int unique_id;
 public Foo()
 {
 unique_id = counter++;
 }
}

Avoiding Data Races

0 The three most frequent ways to avoid data races on a
variable

0 Make it isolated

0 variable is only ever accessed by one task

0 Make it immutable

0 variable is only ever read

0 Make it synchronized

0 Use a lock to arbitrate concurrent accesses

Programming with Shared Memory

0 Keep abstraction level HIGH

0 Temptation: ad-hoc parallelization

0 Add tasks or parallel loops all over the code

0 Discover data races/deadlocks, fix them one-by-one

0 Problem (depending on the programmer):

0 Complexity adds up quickly

0 Easy to get cornered by deadlocks, atomicity violations,
data races

0 These bugs are often hard to expose

Programming with Shared Memory

0 Use well-understood, simple high-level patterns

 Architectural Patterns
Localize shared state

Replication Patterns
Make copies of shared state

Producer-Consumer
Immutable Data

Double Buffering

Worklist

Pipeline

Producer-Consumer Pattern

0 Also called the Bounded Buffer
problem

0 One or more producers add
items to the buffer

0 One or more consumers
remove items from the buffer

Buffer

Producer

Producer

Producer

Consumer

Consumer Consumer

Producer-Consumer Pattern

1. Item is local to Producer
before insertion into buffer

2. Item is local to Consumer
after removal from buffer

3. What about buffer?

0 Buffer is thread-safe

0 Blocks when full/empty

Buffer

Producer

Producer

Producer

Consumer

Consumer Consumer

Pipeline Pattern

0 Generalization of Producer-
Consumer

0 One or more workers per stage

0 First stage = Producer

0 Last stage = Consumer

0 Middle stages consume and
produce

Buffer

Stage 1
Worker

Stage 1
Worker

Stage 1
Worker

Stage 2
Worker

Stage 2
Worker

Stage 2
Worker

Buffer

Stage 3
Worker

Stage 3
Worker

Stage 3
Worker

36

Worklist Pattern

0 Worklist contains items to process

0 Workers grab one item at a time

0 Workers may add items back to worklist

0 No data races: items are local to workers

Worklist

Worker Worker Worker

Immutability

0 Remember: concurrent reads do not conflict

0 Idea: never write to shared data

0 All shared data is immutable (read only)

0 To modify data, must make a fresh copy first

0 Copy-On-Write

Parallelizing Computations

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

Decomposition of computation in
tasks
Assignment of tasks to processes

Orchestration of data access,
communication, synchronization
Mapping processes to processors

Partitioning

0 Identify concurrency and decide at what level to exploit it

0 Break up computations into tasks to be divided among
processes

0 Tasks may become available dynamically

0 Number of tasks may vary with time

0 Enough tasks to keep processors busy

0 Decomposition independent of architecture or
programming model

0 Structured approaches usually work well

0 Remember: Shared memory design patterns

An Example:
Decomposition

Task decomposition
• Independent coarse-

grained computation
• Inherent to the algorithm
• Sequence of statements

(instructions) that operate
together as a group

• Corresponds to some
logical part of program

An Example:
Decomposition

Task decomposition
• Parallelism in the

application

Data decomposition
• Same computation is

applied to small data
chunks derived from a
large data set

An Example:
Decomposition

Task decomposition
• Parallelism in the

application
Data decomposition
• Same computation many

data
Pipeline decomposition
• Data assembly lines
• Producer-consumer

chains
• Usually observed in case

of regular, one-way, mostly
stable data flow

An Example:
Decomposition

Finding Concurrency Design Space

0 Programs often naturally
decompose into tasks

0 Two common
decompositions:

0 Function calls

0 Distinct loop iterations

0 Dependence Analysis:
Given two tasks, how to
determine if they can
run in parallel?

Data Dependence

0 Assuming statements S1 and S2, S2 is data-dependent on
S1 if:

[I(S1) ∩ O(S2)] ∪ [O(S1) ∩ I(S2)] ∪ [O(S1) ∩ O(S2)] ≠ Ø

Where,

I(Si) is the set of memory locations read by Si, and

O(Sj) is the set of memory locations written by Sj

and there is a feasible runtime execution path from S1 to
S2

0 Called Bernstein Condition

Types of Data Dependence

0 True dependence

O(S1) ∩ I (S2) , S1-> S2 and S1 writes something read by S2

0 Anti-dependence

I(S1) ∩ O(S2) , mirror relationship of true dependence

0 Output dependence

O(S1) ∩ O(S2), S1->S2 and both write the same memory
location

Control Dependence

0 There is a control
dependence between two
statements S1 and S2 if

0 S1 could be possibly
executed before S2

0 The outcome of S1
execution will determine
whether S2 will be
executed

A: while(node){

B: node = node->next;

C: res = work(node);

D: write(res);

 }

Loop Parallelism Patterns

0 Many programs are expressed using iterative constructs

0 Loops are a major part of most programs

0 Loop parallelism especially useful when code cannot be
massively restructured

0 Different techniques:

0 DOALL

0 DOACROSS

0 DSWP (Decoupled Software Pipelining)

DOALL

Consider the following loop

int arr[10], op[10];

int i = 0;

while(i<10) {

 op[i] = arr[i]*arr[i]; (A)

 i++;

}

i=0 i=1 i=2 i=3 i=9

With Inter-Iteration Dependences?

Consider the following loop

A: while(node){

B: node = node->next;

C: res = work(node);

D: write(res);

 }

Here, work may modify list

Program
Dependence Graph

for the loop

DOACROSS

Consider the following loop

A: while(node){

B: node = node->next;

C: res = work(node);

D: write(res);

 }

Here, work may modify list

Communication latency =

1 cycle/iteration

Decoupled Software Pipelining (DSWP)

Consider the following loop

A: while(node){

B: node = node->next;

C: res = work(node);

D: write(res);

 }

Here, work may modify list

Communication latency =

1 cycle/iteration

