

Topics

0 Synchronization Problems
0 Producer-Consumer Problem

0 Readers-Writers Problem
0 Semaphores and their Implementation
0 Data Races
0 Shared Memory Patterns
0 Parallelizing Computations
0 Partitioning and Problem Decomposition

0 Loop Parallelism

Producer-Consumer Problem

* Problem description

— A producer: in an infinite loop and produce one item
per iteration into the buffer

— A consumer: in an infinite loop and consumes one item
per iteration from the buffer

— Buffersize: can only hold at most N items
— Need to make sure that

— Producer does not try to add data into the buffer when itis full
— Consumer does not try to remove data from an empty buffer

Producer-Consumer Problem

int counter; //initialize to 0 // consumer
// Producer repeat
repeat 1 read the counter value;
1 read the counter value 2 if(Counter>0){
2 if(Counter < MAX_COUNT){ 3 decrement counter;
3 increment the counter; 4 update the counter with the
4 update the counter with the incremented value;
incremented value; 5 consume a value from buffer
5 Store a value into the buffer 6 //ERROR if buffer empty
6 //ERROR if buffer full }
) else{
else{ 7 wait
7 wait }
} Until YY says stop
Until YY says stop

Producer-Consumer Problem

int counter; //initialize to 0
Mutex m;
// Producer
repeat
| Mutex_Lock(&m);
2 read the counter value
3 if(Counter < MAX_COUNT){
4 increment the counter;
5 update the counter with the

incremented value;
6 Store a value into the buffer
7 //ERRORif buffer full
8 Mutex_Unlock(&m)
else{
9 wait

Until YY says stop

// consumer

repeat
1 Mutex_lock(&m);
2 read the counter value;
3 if(Counter > 0) {
4 decrement counter;
5

update the counter with the
incremented value;

consume a value from buffer
//ERROR if buffer empty

8 Mutex_Unlock(&m)
}

else{
9 wait

}
Until YY says stop

N O

Producer-Consumer Problem

int counter; //initialize to 0

Mutex m;
// Producer
repeat
1 Mutex_Lock(&m);
2 read the counter value
3 if(Counter < MAX_COUNT){
4 increment the counter;
5 update the counter with the
incremented value;
6 Store a value into the buffer
7 //ERRORif buffer full
8 Mutex_Unlock(&m)
llse{
9 Mutex_Unlock(&m)
10 wait
}

Until YY says stop

// consumer
repeat

1
2
3
4
5

(@)

10

Mutex_lock(&m);

read the counter value;

if(Counter > 0) {
decrement counter;

update the counter with the
incremented value;

consume a value from buffer
//ERROR if buffer empty

Mutex_Unlock(&m)
}

else{
Mutex_Unlock(&m)
wait

}

Until YY says stop

Semaphores

0 A synchronization variable that takes on positive integer
values

0 Two operations:

0 P(semaphore): an atomic operation that waits for semaphore
to become greater than zero, then decrements by 1 (Dutch:
proberen)

0 V(semaphore): an atomic operation that increments
semaphore by 1 (Dutch: verhogen)

Producer-Consumer Problem

Semaphore Full =0
Semaphore Empty = BUFFER_SIZE /[consumer

Mutex m; //Equivalent to Semaphore m =1

repeat
/l Producer 1 P(&full)
repeat 2 Mutex_lock(&m);
1 P(&empty) 3 Deque item from buffer
2 Mutex_lock(&m); 4 Mutex_Unlock(&m);
3 Enqueue new item in buffer 5 V(&empty);
4 Mutex_Unlock(&m); Until YY says stop

5 V(&full);
Until YY says stop

Readers-Writers Problem

@

A Shared Database
e Two classes of users:

* Readers - never modify database
* Writers - read and modify database
* Is using a single lock on the whole database sufficient?
* Like to have many readers at the same time
* Only one writer at a time

Readers-Writers Problem

0 Deals with situations in which many threads much access
the same shared memory at one time

0 No thread may access the shared object for reading or
writing while another thread is writing to it

0 Concurrent reads are allowed

0 First Readers-Writers problem: No reader shall be kept
waiting if the shared object is currently open for reading

0 Second Readers-Writers problem: No writer, once added to
the queue, shall be kept waiting longer than absolutely
necessary

Readers-Writers Problem

¢ Basic structure of a solution:

0 Reader ()
Wait until no writers
Access data base
Check out - wake up a waiting writer

0 Writer ()
Wait until no active readers or writers
Access database
Check out - wake up waiting readers or writer

0 State variables (Protected by a lock called “lock”):
0 int AR: Number of active readers; initially = 0

0 int WR: Number of waiting readers; initially = 0
0 int AW: Number of active writers; initially = 0

0 int WW: Number of waiting writers; initially = 0
0 Condition okToRead = NIL

0 Condition okToWrite = NIL

Readers-Writers Problem

Reader () {
// First check self into system
lock.Acquire () ;

while ((AW + WW) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait (&lock); // Sleep on cond var
WR--; // No longer waiting

}

AR++; // Now we are active!

lock.release () ;

// Perform actual read-only access
AccessDatabase (ReadOnly) ;

// Now, check out of system
lock.Acquire () ;

AR--; // No longer active
if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal () ; // Wake up one writer

lock.Release () ;

Readers-Writers Problem

Writer () {

}

// First check self into system
lock.Acquire() ;

while ((AW + AR) > 0) { // Is it safe to write?

WW++ ; // No. Active users exist
okToWrite.wait (&lock);// Sleep on cond var
WW--; // No longer waiting

}

AW++; // Now we are active!

lock.release () ;

// Perform actual read/write access
AccessDatabase (ReadWrite) ;

// Now, check out of system
lock.Acquire();

AW--; // No longer active

if (WW > 0){ // Give priority to writers
okToWrite.signal(); // Wake up one writer

} else 1if (WR > 0) { // Otherwise, wake reader
okToRead.broadcast(); // Wake all readers

lock.Release () ;

Implementation of Semaphores

0 No existing hardware implements semaphores directly

0 Semaphores are built up in software using some lower-
level synchronization primitive provided by hardware

0 Uniprocessor solution: Disable interrupts

typedef struct ¢
int count;

queue q; /* queue of threads waiting on this
semaphore */

} Semaphore;

Implementation of Semaphores

vold P (Semaphore s) { volid V (Semaphore s) {

Disable interrupts; Disable interrupts;

if (s->count > 0) ¢{ 1f (i1sEmpty(s->q)) {
s—->count -= 1; s—->count += 1;
Enable interrupts; } else {
return; thread = RemoveFirst (s-
/s >q) ;
Add (s->q, current wakeup (thread); /* put
thread) ; thread on the ready queue
sleep(); // re-dispatch i
Enable interrupts; }

Enable 1nterrupts;

Implementation of Semaphores

0 Multiprocessor Solution:
0 Can’t turn off all other processors

0 Can't just turn off interrupts to get low-level mutual exclusion

0 Most CISC Machines provide some sort of atomic read-
modify-write instruction
0 test&set

0 swap

0 compare&swap

Implementation of Semaphores

0 Modern RISC machines do not provide read-modify-write
instructions

0 Instead they provide a weaker mechanism that does not
guarantee atomicity but detects interference

0 load-linked instruction (1dl): Loads a word from memory and
sets a per-processor flag associated with that word (usually
stored in the cache)

0 store operations to the same memory location (by any
processor) reset all processor’s flags associated with that
word.

0 store-conditionally instruction (stc): Stores a word iff the
processor’s flag for the word is still set; indicates success or
failure.

Implementation of Semaphores

0 Atomic Read-Modify-Write Example in MIPS

atomic 1inc:

11 s$t0, 0(sa0) # load linked
adddylSElll LISIEOL L] # increment
s@-TSTlSTTorFSEI0 # store cond'l

begz $tl, atomic inc
loop if failed

Different Implementations for Mutual
Exclusion

Using 1dl/stc
Treocikes

while (1dl (&lock) !'= 0 ||
!stc(&lock, 1)),

cHITiETreat-rsectiron

lock = 0;

Using Test And Set

int lock;
while (TAS(&lock, 1) != 0);

critical section

lock = 0;

Using ldl/stc to Implement Semaphores

typedef struct {
dnitl dockdd L AXITn 1 Hiad sz 02 4
int count;

queue q; /* queue of threads waiting on this
semaphore */

} Semaphore;

Using ldl/stc to Implement Semaphores

vold P (Semaphore s) {
Disable interrupts;

while (1dl (s—->lock) != 0 ||
!stc(s—->1lock, 1));

if (s=>count > 0) ¢
s—->count -= 1;
s->lock = 0;
Enable interrupts;
return;y;
}
Add (s->qg, current thread);
s->lock = 0;
sleep(); /* re-dispatch */

Enable interrupts;

void V (Semaphore s) {

Disable interrupts;

while (1dl (s->lock) != 0 ||
!stc(s->1lock, 1));

if (isEmpty(s->q)) {
s—->count += 1;

} else |
thread = RemoveFirst(s->q);

wakeup (thread); /* put
thread on the ready queue

LW
}
s->lock = 1;

Enable interrupts;

Whatis a Data Race?

0 Two concurrent accesses to a memory location at least one of
which is a write.

0 Example: Data race betweena read and a write

()=>{X=2; }1
() => { System.Console.writeLine(x); }

int X = 1;
Parallel.Invoke(@

);
0 Outcome nondeterministic or worse

0 may print 1 or 2, or arbitrarily bad things on a relaxed memory
model

Data Races and Happens-Before

0 Example of a data race with two writes:

TAtEX—=11
Parallel.Invoke(() => { x = 2; },
QO ={x=3; })j;

System.Console.writeLine(x);

0 We visualize the ordering of memory accesses with a
happens-before graph:

There is no path between

write 1 to
(write 2 to x) and (write 3 to x), X
thus they are concurrent, _ Z////\\\&.
thus they create a data race write 2 to X /erte 3tox
(note: thereadisnotina datarace) \
read

Quiz: Where are the data races?

Parallel.For(1,2,
1 => {
x = a[1];

P

Parallel.For(1,2,
1 => {
ali] = x;

s

Parallel.For(1,2,
1T => {

al[1] = a[i+1];
};

Quiz: Where are the data races?

Parallel.For(1,2,

Parallel.For(1,2,

Parallel.For(1,2,

1 => { 1 => { 1 => {
X = al[i]; al[i] = al[i] = al[i+1];
DK ; s
reads reads reads X reads X reads reads
3\/[191125)<__~>a r]‘"les X Wr1tes al0] ertes al1] r1 es a1l Mrl esal2]

S vogan

Race between two
writes.

BNecais

No Race between
two reads.

N

Race between a read
and a write.

Data Races can be hard to spot

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

0 Code looks fine... at first.

Data Races can be hard to spot

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

0 Problem: we have to follow calls... even if they look harmless
at first (like a constructor).

class Foo { _m;::::*—-*—-~ﬁha I)Eltfl
private static int counter;
private int unique id; Race on

public Foo())
static

{ ,f—ﬁ
i id =) i
: unique_1 @++ fleld)

Avoiding Data Races

0 The three most frequent ways to avoid data races on a
variable

0 Make it isolated
0 variable is only ever accessed by one task

0 Make it immutable

0 variable is only ever read

0 Make it synchronized

0 Use alock to arbitrate concurrent accesses

Programming with Shared Memory

0 Keep abstraction level HIGH
0 Temptation: ad-hoc parallelization

0 Add tasks or parallel loops all over the code

0 Discover data races/deadlocks, fix them one-by-one
0 Problem (depending on the programmery):

0 Complexity adds up quickly

0 Easy to get cornered by deadlocks, atomicity violations,
data races

0 These bugs are often hard to expose

Programming with Shared Memory

0 Use well-understood, simple high-level patterns

Architectural Patterns Replication Patterns
Localize shared state Make copies of shared state

Producer-Consumer Immutable Data

Pipeline :
Double Buffering

Worklist

Producer-Consumer Pattern

Producer Producer

0 Also called the Bounded Buffer
problem Producer

0 One or more producers add
items to the buffer

¢ One or more consumers / \

remove items from the buffer

Consumer

Producer-Consumer Pattern

Producer Producer

1. Item is local to Producer
before insertion into buffer Producer

2. Itemis local to Consumer
after removal from buffer

3. What about buffer?
0 Buffer is thread-safe

0 Blocks when full/empty / \

Consumer l' Consumer

Consumer

Pipeline Pattern

0 Generalization of Producer-
Consumer

0 One or more workers per stage
0 First stage = Producer
0 Last stage = Consumer

0 Middle stages consume and
produce

Worklist Pattern

0 Worklist contains items to process
0 Workers grab one item at a time
0 Workers may add items back to worklist
0 No data races: items are local to workers

£ ~<sa »\ 1

Immutability

0 Remember: concurrent reads do not conflict

0 ldea: never write to shared data
0 All shared data is immutable (read only)

¢ To modify data, must make a fresh copy first
0 Copy-On-Write

Parallelizing Computations

Partitioning
|
| |
D A O M
. = i . ,
C O s ﬁ P
o] -, O [p
m 9 c i P P
P - n s n o | "1
o] O O m t g
— g > — e — P — I ‘ —_ —
i - n a
1 o | i P | Py
B O '
0 =" 0
i o ”
Sequential Tasks Processes Parallel Processors
computation program
Decomposition of computation in Orchestration of data access,
tasks communication, synchronization

Assignment of tasks to processes Mapping processes to processors

Partitioning

0 Identify concurrency and decide at whatlevel to exploitit

0 Break up computations into tasks to be divided among
processes

0 Tasks may become available dynamically
¢ Number of tasks may vary with time

0 Enough tasks to keep processors busy

0 Decomposition independent of architecture or
programming model

0 Structured approaches usually work well

0 Remember: Shared memory design patterns

MPEG bit stream

MPEG Decoder

[VLD]
macmb.focks motion vectors
spllt
frequency encoded
macroblocks / d:ffe rentially coded
motion vectors
[Zngag]
[IQuantlzatmn] M-::-tlon "ur‘ector Dec-::-de
[IDCT] [Repeat]

v
An E am le . [Saturation
X p) spatially encoded macroblocks maotion vectors

Decomposition [})

Motion
Compensation

l recovered picture

[Picture Reorder]

v

[Coler Conversion]

'

[Display]

MPEG bit stream

] MPEG Decoder
An Example: N S
VLD
D eco mp 0S iti on [Lr:nacmb.foclks, motion vectors
spli
f;i'?:ﬁgg%;ﬁg mfi / dfﬁergqrgggg f.fgg?s
[ZigZag] :
. *

TaSk dECOmpOSItlon [IQuantization] [Motion Vector Decode]
* Independent coarse- | v)| ' |
. . Repeat

grained computation o ¥ |
aturation
* Inherentto the algorithm _ = —————
« Sequence of statements [join J

.

(instructions) that operate

Motion
Compensation

togetheras a group
* Corresponds to some
logical part of program

irecovered picture

[

Picture Reorder]

v

[Color Conversion]

:

[

Display]

MPEG bit stream
MPEG Decoder
An Example: M S
VLD
D 141 l macroblocks, motion vectors
ecomp051tlon g]
spli
g}?}?ﬁﬁﬂ%&:}fg mjii /"]// dfﬁer;rgggg Egggg
ZigZag
Task decomposition __ ¥ v ——
. . [1Quantization] [Motion Vector Decode]
e Parallelismin the | ¥ i v
application ¥ [Repext |
[Saturation]
T spafially encoded macrob!ccksWn vectors
Data decomposition [join]
* Same computationis
applied to small data Motion
chunks derived from a Compensation
lal‘ge data Set lremvered picture
[Picture Reorder]
v
[Color Conversion]
v
Display]

An Example: MPEG Decoder MPEG bfst‘ream

141 [VLD]
D e C O m p O S ltl O n v macroblocks, motion vectors
4 /' \ frequency encoded 7Iit -] _
Task decomposition][] macroblocks W’“’ estors
* Parallelismin the [:

ZigZag)
)

[Motion Vector Decode]

application A&_ﬁ] oz !
Data decomposition = | Repeat |
* Same computation many

da ta spatially encoded macrobfocks].;;.m Jmotion vectors
Pipeline decomposition
* Dataassembly lines (o
* Producer-consumer Compensation
chains lrecovered picture
* Usually observed in case [Picture Reorder)
of regular, one-way, mostly [Color S)

stable data flow (v |

Display

Finding Concurrency Design Space

¢ Programs often naturally Decomposition Patterns
decompose into tasks

0 Two common
decompositions:

¢ Function calls

¢ Distinct loop iterations Dependency Analysis

_ Patterns
0 Dependence Analysis:

Given two tasks, how to
determine if they can
run in parallel?

Design Evaluation

Data Dependence

0 Assuming statements S1 and S2, S2 is data-dependenton
S1if:

[I(S1) N O(S2)] U [O(S1)NI(S2)JU[O(S1)N O(S2)]# 42
Where,

[(Si) is the set of memory locations read by Si, and

O(Sj) is the set of memory locations written by Sj

and there is a feasible runtime execution path from S1 to
S2

0 Called Bernstein Condition

Types of Data Dependence

0 True dependence
O(S1)nI(S2),S1->S2 and S1 writes something read by S2

0 Anti-dependence
[(S1) N O(S2), mirror relationship of true dependence

0 Output dependence

O(S1) N O(S2), S1->S2 and both write the same memory
location

Control Dependence

0 There is a control

dependence betweentwo A: while(node){
statements S1 and S2 if

0 S1 could be possibly
executed before S2 _
0 The outcome of S1 D: write(res);

execution will determine }
whether S2 will be

B: node = node->next;
C: res=work(node);

executed

Loop Parallelism Patterns

0 Many programs are expressed using iterative constructs
0 Loops are a major part of most programs

0 Loop parallelism especially useful when code cannot be
massively restructured

0 Different techniques:
¢ DOALL
¢ DOACROSS
0 DSWP (Decoupled Software Pipelining)

DOALL

Consider the following loop

intarr[10], op[10];

inti=0;
while(i<10){
opli] = arr[i]*arr[i]; (A) o o o
1++; i=0 i=1 i=2 i=3 i=9

With Inter-Iteration Dependences?

Consider the following loop

— Data dependence
- - = Control dependence

A: while(node){ t (A
B: node = node->next; %
C: res=work(node);

D: write(res);

} Program
Dependence Graph
for the loop

Here, work may modify list

DOACROSS

Consider the following loop

A: while(node){

B: node = node->next;
C: res =work(node);
D: write(res);

}

Here, work may modify list

Communication latency =
1 cycle/iteration

Core 1 Core 2

C-CH-Cx BT O

SO &

>
DO—Er &F

DOACROSS
2 cycles/iter

Decoupled Software Pipelining (DSWP)

Core 1 Core 2

Consider the followingloop N &
.
A: while(node){ ®
B: node = node->next; i 8) 0.
C: res=work(node); 1 B
D: write(res); 1
) 6l _
Here, work may modify list 71 &
| @ e
Communication latency = As) (9
1 cycle/iteration |

Y DSWP
2 cycles/iter

