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LECTURE OUTLINE

 Introduction to Threads

 Correctness

 Performance
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INTRODUCTION TO THREADS
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WHAT IS A THREAD?
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WHAT IS A THREAD?
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THREADS VS. PROCESSES

Process
 “Heavyweight”

 Slower context switches

 Expensive IPC

 Independent

 Secure 

 Protected memory space

Thread
 “Lightweight”

 Faster context switches

 Direct communication

 Share state and resources

 Insecure

 Shared memory space

(Generalities)
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USER THREADS AND KERNEL THREADS
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 User Thread
 Implemented in software 

library

 Transparent to the OS

 Will block other threads

 Library typically uses 

non-blocking calls then 

manages threads

 Fast to create and manage

 Do not benefit from 

multithreading or 

multiprocessing

 Kernel Thread

 Managed by OS

 Will not block other 

threads

 Slower to swap than 

user threads



THREAD IMPLEMENTATIONS

Many to One Many to Many

One to One
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WHY USE THREADS?
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WHY USE THREADS?
 Interactive Programs – Avoid blocking!

 Modern Hardware 

is designed for 

thread level 

parallelism

(TLP)
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Source: Tom Ball - PPCP-54454



HARDWARE FOR TLP

 Chip Multi-Processors

 GPUs

 Clusters

 Cloud Computing

 Multithreading
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MULTI-THREADING TERMS

 Superscalar – ILP mechanism for performing 
multiple instructions concurrently (One CPU with 
multiple functional units)

 Fine-Grained – Switch between threads on each cycle

 Coarse-Grained – Switch between threads on „costly‟ 
stalls (such as L2 cache miss)

 Multiprocessing – Multi-core

 Simultaneous – Multiple threads running 
concurrently on single processor 12



MULTITHREADING
Intel

Pentium 4

Intel

Itanium 2

Intel

Hyper-Threading

Ex:
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Sun 

UltraSPARC

Source: Dr. Chris Lupo – CPE520 Advanced Computer Architecture Winter 2010

Intel 

Core 2 Duo



PTHREADS
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PTHREADS (POSIX THREADS)

 C library that provides

 Thread management

 Shared Memory

 Locks

 In Linux

 One to One

 Created using „clone‟
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SIMPLE PTHREAD EXAMPLE
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METHODS OF THREAD COMMUNICATION
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int gInt;

spawn t1, t2;

t1:

…

gInt = 5

…

t2:

…

…

int lInt = gInt

print lInt -> 5

…

Shared Memory -Memory that may be 

simultaneously accessed by multiple threads



METHODS OF THREAD COMMUNICATION
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t1:

send 5

t2:

…

…

recv lInt

Print lInt -> 5

Message Passing - Threads pass messages for data 

transfer and synchronization



THREAD CORRECTNESS
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RACE CONDITIONS

 Unsynchronized access to shared state from 

multiple threads whose outcome depends upon 

the order of access

 r1.check, r2.check, r1.move, r2.move,CRASH
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r1

r1

r2

r2

Source: Tom Ball - PPCP-54454



RACE CONDITION PROGRAM
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SYNCHRONIZATION

 Want to be able to control access to shared 

memory

 Several methods exist:

 Mutex

 Semaphore

 Monitors

 Barriers
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NAIVELY FIXING OUR ROBOTS

23

lock()

r1.check()

unlock()

...

…

lock()

r1.move()

unlock()

lock()

…

…

r2.check()

unlock()

lock()

…

…

r2.move()

unlock()

Robot 1 Robot 2

CRASH
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ATOMICITY

 A statement sequence S is atomic if S‟s effects 

appear to other threads as if S executed without 

interruption



FIXING OUR ROBOTS
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lock()

r1.check()

r1.move()

unlock()

lock()

…

…

…

r2.check()

unlock()

Robot 1 Robot 2

r1

r2

r1

r2



MUTEX EXAMPLE
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MUTEX IMPLEMENTATION - HARDWARE

 Using XCHG on x86 to implement a mutex

 XCHG exchanges two operands. If a memory operand 

is involved, BUS LOCK is asserted for the duration of 

the exchange.
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LOCK:       ; mutex pointer is in EBX; clobbers EAX
XOR EAX, EAX     ; Set EAX to 0
XCHG EAX, [EBX]  
AND EAX, EAX     ; Test for 1
JZ LOCK          ; if we got a zero, spin-wait
RET

UNLOCK:     ; mutex pointer is in EBX
MOV [EBX], 1
RET



MUTEX IMPLEMENTATION - SOFTWARE

 Peterson‟s Algorithm

 Works for two processes, but can generalize

 Does not work with out-of-order execution
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flag[0]   = 0;
flag[1]   = 0;

P0: flag[0] = 1;                         P1: flag[1] = 1;
turn = 1;                                turn = 0;
while (flag[1] == 1 && turn == 1) while (flag[0] == 1 && turn == 0)
{                                        {

// busy wait                          // busy wait
} }                                 
// critical section                      // critical section 

...                                      ...
// end of critical section               // end of critical section
flag[0] = 0;                             flag[1] = 0;



MUTEX IMPLEMENTATION

 Exact locking mechanism is hardware dependent

 If a thread fails to acquire lock

 Waits for lock 

 Spin vs Yield

 How to handle multiple threads waiting on single lock

 Queue

 Scheduler

 Reentrant Locks

 Allowed to acquire same lock multiple times

 Must be released same number of times
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OTHER ISSUES WITH LOCKS

 Dead-lock – Circular waiting on locks

 Live-lock – Locks state changing with no progress

 Lock contention – Many threads require access to 
single lock

 Lock overhead – Locking mechanisms are slow

 Priority Inversion – Low priority thread holds lock, 
prevents progress of high priority

 Convoying – Lock contention with slowest threads 
acquiring the lock first 30



PERFORMANCE
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THREAD GRANULARITY
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THREAD GRANULARITY

 Better to have lots of threads doing a little work 

or a few threads doing lots of work?

 Depends on:

 How much communication overhead will result?

 Implementation of threads

 Hardware
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JACOBI ITERATIONS

 For a matrix, on each iteration element‟s new 

value = average of neighbors old values

 How many threads?
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JACOBI IN C USING MPI
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JACOBI IN ERLANG
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LOCKING GRANULARITY
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LOCKING GRANULARITY

 Better to lock the entire structure, or parts?

 Lock entire list when performing an operation

 Only alter one lock per access to list

 One thread in list blocks all others from accessing list

 Lock each element of the list, hand-over-hand

 Threads can work on different parts of the list concurrently

 Lock per element, or group of elements

 Threads in front of list prevent access to rest of list
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LOCK FREE DATA STRUCTURES
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LOCK-FREE ALGORITHMS

 Can be more efficient and scalable than locking

 Not the same as wait-free

 Lock-free guarantees system progress

 Wait-free guarantees thread progress

 Operation must have bound on number of steps till 

completion 

 Very rare as their performance is generally low

 Good for many reads, few writes

 Most attempt operation then retry if changed 

occurred during operation 40



COMPARE-AND-SWAP

CMPXCHG ON X86

 Atomically compares contents of memory location 

to a given value, if they match it updates value

 Hardware support handles this operation 

atomically

 Integral in lock free structures
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int compare_and_swap ( int* register, int oldval, int newval) 
{ 

int old_reg_val = *register;
if (old_reg_val == oldval) 

*register = newval;
return old_reg_val;

}



LOCK-FREE LINKED LIST – INSERTION
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Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location, 

note left and right 

nodes



LOCK-FREE LINKED LIST – INSERTION
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Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location, 

note left and right 

nodes

 Set new.next = right



LOCK-FREE LINKED LIST – INSERTION
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Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location, 

note left and right 

nodes

 Set new.next = right

 If(CAS &left.next, 

right, new) then return



LOCK-FREE LINKED LIST – INSERTION
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 Create new node

 do

 Find insertion location, 

note left and right 

nodes

 Set new.next = right

 If(CAS &left.next, 

right, new) then return

 while(true)

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)



LOCK-FREE LINKED LIST

 Delete creates problems

 Naive Delete

 Fails for concurrent insert
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Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)



LOCK-FREE LINKED LIST

 Correct delete requires two compares

 First mark deleted node as „logically deleted‟

 Then „physically delete‟ the node
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Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)



PERFORMANCE OF LOCK-FREE LINKED LIST
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1 million random insertion, deletions on keys 0 - 8191

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)



LOCK-FREE ABA PROBLEM – 1
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Thread 1:

Insert 20 #interupted

Thread 2:

... 



ABA PROBLEM – 2 
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Thread 1:

Insert 20 #partial completion

...

Thread 2:

...

delete 30 address A



ABA PROBLEM – 3 
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Thread 1:

Insert 20 #partial completion

...

...

Thread 2:

...

delete 30 #address A

insert 15 #address A



ABA PROBLEM – 4 
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Thread 1:

Insert 20 #partial completion

...

...

Insert 20 #finishes and    

#improperly succeeds

Thread 2:

...

delete 30 #address A

insert 15 #address A



SOLUTIONS TO ABA

 Keep “tag” bits on each pointer – ABA‟

 Requires double-word CAS

 Use reference counts on cells (Valois)

 Only reuse cell when reference count = 0 

 Use „Load Linked‟ and „Store Conditional‟

 LL returns value of memory location

 SC stores only if no updates occurred since LL
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PERFORMANCE NOT ALWAYS GREAT
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Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

1 million random insertion, deletions on keys 0 - 255



NEXT TIME…
Multi-process synchronization problems

•Producer Consumer!

•Reader-Writer!

•DOALL!
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APPENDIX

More interesting topics56



AVOIDING ERRORS WITH PTHREADS

 Create data structures that handle most of the 

synchronization for you

 Code the locks once correctly, then don‟t worry about 

them anymore

 For example:

 Create a synchronized list

 Perform locks inside add/remove/search functions

 Synchronization now transparent to rest of program

57



SMART PROGRAMMING WITH PTHREADS

 Locks serialize the program, want to use as little 

as possible

 Only place lock around critical area

 Less time spent holding lock, less lock contention

 Locks have high overhead

 Constant locking and unlocking can result in poor 

performance
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WHAT IS A DATA RACE?

 Two concurrent accesses to a memory location at least 

one of which is a write.

 Example: Data race between a read and a write

int x = 1;

Parallel.Invoke( 

() => { x = 2; },

() => { System.Console.WriteLine(x); }

);

 Outcome nondeterministic or worse

 may print 1 or 2, or arbitrarily bad things on a relaxed 

memory model

writes 

x
reads x

59
Practical Parallel and Concurrent 

Programming DRAFT: comments to 

msrpcpcp@microsoft.com 

6/22/2010



DATA RACES AND HAPPENS-BEFORE

 Example of a data race with two writes:

int x = 1;

Parallel.Invoke( () => { x = 2; },

() => { x = 3;  }  );

System.Console.WriteLine(x);

 We visualize the ordering of memory accesses with a 

happens-before graph:

There is no path between 

(write 2 to x) and (write 3 to x),

thus they are concurrent,

thus they create a data race

(note:  the read is not in a data race)

write 2 to x write 3 to x

write 1 to x

read x

60
Practical Parallel and Concurrent 

Programming DRAFT: comments to 

msrpcpcp@microsoft.com 

6/22/2010



QUIZ: WHERE ARE THE DATA RACES?

Parallel.For(1,2, 
i => {

x = a[i];
});

Parallel.For(1,2, 
i => {

a[i] = x;
});

Parallel.For(1,2, 
i => {

a[i] = a[i+1];
});

61
Practical Parallel and Concurrent 

Programming DRAFT: comments to 

msrpcpcp@microsoft.com 

6/22/2010



QUIZ: WHERE ARE THE DATA RACES?

Parallel.For(1,2, 
i => {

x = a[i];
});

reads 

a[0]
writes x

reads 

a[1]
writes xrace

Parallel.For(1,2, 
i => {

a[i] = x;
});

reads x

writes 

a[0]

reads x

writes 

a[1]

Parallel.For(1,2, 
i => {

a[i] = a[i+1];
});

reads 

a[2]
writes 

a[1]

reads 

a[3]
writes a[2]

Race between two 

writes.

Race between a 

read and a write.
No Race between 

two reads.

62
Practical Parallel and Concurrent 

Programming DRAFT: comments to 

msrpcpcp@microsoft.com 

6/22/2010



SPOTTING READS & WRITES

 Sometimes a single statement performs multiple 

memory accesses

6/22/2010
Practical Parallel and Concurrent 

Programming DRAFT: comments to 

msrpcpcp@microsoft.com 
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When you execute

a[i] = x

there are actually three 

reads and one write:

reads x

reads a

reads i

writes a[i]

When you execute

x += y

there are actually two 

reads and one write:

reads x

reads y

writes x



DATA RACES CAN BE HARD TO SPOT.

 Code looks fine... at 

first.

Parallel.For(0, 10000, 
i => {a[i] = new Foo();})

64
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Programming DRAFT: comments to 

msrpcpcp@microsoft.com 
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DATA RACES CAN BE HARD TO SPOT.

 Problem: we have to follow calls... even if they look 

harmless at first (like a constructor).

Parallel.For(0, 10000, 
i => {a[i] = new Foo();})

class Foo {
private static int counter;
private int unique_id;
public Foo()

{
unique_id = counter++;
}

}
65

Practical Parallel and Concurrent 

Programming DRAFT: comments to 

msrpcpcp@microsoft.com 

6/22/2010


