
THREAD PARALLELISM

Stephen Beard1

LECTURE OUTLINE

 Introduction to Threads

 Correctness

 Performance

2

INTRODUCTION TO THREADS

3

WHAT IS A THREAD?
4

WHAT IS A THREAD?

5

THREADS VS. PROCESSES

Process
 “Heavyweight”

 Slower context switches

 Expensive IPC

 Independent

 Secure

 Protected memory space

Thread
 “Lightweight”

 Faster context switches

 Direct communication

 Share state and resources

 Insecure

 Shared memory space

(Generalities)

6

USER THREADS AND KERNEL THREADS

7

 User Thread
 Implemented in software

library

 Transparent to the OS

 Will block other threads

 Library typically uses

non-blocking calls then

manages threads

 Fast to create and manage

 Do not benefit from

multithreading or

multiprocessing

 Kernel Thread

 Managed by OS

 Will not block other

threads

 Slower to swap than

user threads

THREAD IMPLEMENTATIONS

Many to One Many to Many

One to One

8

WHY USE THREADS?
9

WHY USE THREADS?
 Interactive Programs – Avoid blocking!

 Modern Hardware

is designed for

thread level

parallelism

(TLP)

10

Source: Tom Ball - PPCP-54454

HARDWARE FOR TLP

 Chip Multi-Processors

 GPUs

 Clusters

 Cloud Computing

 Multithreading

11

MULTI-THREADING TERMS

 Superscalar – ILP mechanism for performing
multiple instructions concurrently (One CPU with
multiple functional units)

 Fine-Grained – Switch between threads on each cycle

 Coarse-Grained – Switch between threads on „costly‟
stalls (such as L2 cache miss)

 Multiprocessing – Multi-core

 Simultaneous – Multiple threads running
concurrently on single processor 12

MULTITHREADING
Intel

Pentium 4

Intel

Itanium 2

Intel

Hyper-Threading

Ex:

13

Sun

UltraSPARC

Source: Dr. Chris Lupo – CPE520 Advanced Computer Architecture Winter 2010

Intel

Core 2 Duo

PTHREADS

14

PTHREADS (POSIX THREADS)

 C library that provides

 Thread management

 Shared Memory

 Locks

 In Linux

 One to One

 Created using „clone‟

15

SIMPLE PTHREAD EXAMPLE

16

METHODS OF THREAD COMMUNICATION

17

int gInt;

spawn t1, t2;

t1:

…

gInt = 5

…

t2:

…

…

int lInt = gInt

print lInt -> 5

…

Shared Memory -Memory that may be

simultaneously accessed by multiple threads

METHODS OF THREAD COMMUNICATION

18

t1:

send 5

t2:

…

…

recv lInt

Print lInt -> 5

Message Passing - Threads pass messages for data

transfer and synchronization

THREAD CORRECTNESS

19

RACE CONDITIONS

 Unsynchronized access to shared state from

multiple threads whose outcome depends upon

the order of access

 r1.check, r2.check, r1.move, r2.move,CRASH

20

r1

r1

r2

r2

Source: Tom Ball - PPCP-54454

RACE CONDITION PROGRAM

21

SYNCHRONIZATION

 Want to be able to control access to shared

memory

 Several methods exist:

 Mutex

 Semaphore

 Monitors

 Barriers

22

NAIVELY FIXING OUR ROBOTS

23

lock()

r1.check()

unlock()

...

…

lock()

r1.move()

unlock()

lock()

…

…

r2.check()

unlock()

lock()

…

…

r2.move()

unlock()

Robot 1 Robot 2

CRASH

24

ATOMICITY

 A statement sequence S is atomic if S‟s effects

appear to other threads as if S executed without

interruption

FIXING OUR ROBOTS

25

lock()

r1.check()

r1.move()

unlock()

lock()

…

…

…

r2.check()

unlock()

Robot 1 Robot 2

r1

r2

r1

r2

MUTEX EXAMPLE

26

MUTEX IMPLEMENTATION - HARDWARE

 Using XCHG on x86 to implement a mutex

 XCHG exchanges two operands. If a memory operand

is involved, BUS LOCK is asserted for the duration of

the exchange.

27

LOCK: ; mutex pointer is in EBX; clobbers EAX
XOR EAX, EAX ; Set EAX to 0
XCHG EAX, [EBX]
AND EAX, EAX ; Test for 1
JZ LOCK ; if we got a zero, spin-wait
RET

UNLOCK: ; mutex pointer is in EBX
MOV [EBX], 1
RET

MUTEX IMPLEMENTATION - SOFTWARE

 Peterson‟s Algorithm

 Works for two processes, but can generalize

 Does not work with out-of-order execution

28

flag[0] = 0;
flag[1] = 0;

P0: flag[0] = 1; P1: flag[1] = 1;
turn = 1; turn = 0;
while (flag[1] == 1 && turn == 1) while (flag[0] == 1 && turn == 0)
{ {

// busy wait // busy wait
} }
// critical section // critical section

... ...
// end of critical section // end of critical section
flag[0] = 0; flag[1] = 0;

MUTEX IMPLEMENTATION

 Exact locking mechanism is hardware dependent

 If a thread fails to acquire lock

 Waits for lock

 Spin vs Yield

 How to handle multiple threads waiting on single lock

 Queue

 Scheduler

 Reentrant Locks

 Allowed to acquire same lock multiple times

 Must be released same number of times

29

OTHER ISSUES WITH LOCKS

 Dead-lock – Circular waiting on locks

 Live-lock – Locks state changing with no progress

 Lock contention – Many threads require access to
single lock

 Lock overhead – Locking mechanisms are slow

 Priority Inversion – Low priority thread holds lock,
prevents progress of high priority

 Convoying – Lock contention with slowest threads
acquiring the lock first 30

PERFORMANCE

31

THREAD GRANULARITY

32

THREAD GRANULARITY

 Better to have lots of threads doing a little work

or a few threads doing lots of work?

 Depends on:

 How much communication overhead will result?

 Implementation of threads

 Hardware

33

JACOBI ITERATIONS

 For a matrix, on each iteration element‟s new

value = average of neighbors old values

 How many threads?

34

JACOBI IN C USING MPI

35

Row for 800 iterations

0

2

4

6

8

10

12

14

0 200 400 600 800 1000 1200

Space Size

T
im

e
 (

s
e
c
o

n
d

s
)

4

16

64

Erlang MPI

JACOBI IN ERLANG

36

LOCKING GRANULARITY

37

LOCKING GRANULARITY

 Better to lock the entire structure, or parts?

 Lock entire list when performing an operation

 Only alter one lock per access to list

 One thread in list blocks all others from accessing list

 Lock each element of the list, hand-over-hand

 Threads can work on different parts of the list concurrently

 Lock per element, or group of elements

 Threads in front of list prevent access to rest of list

38

LOCK FREE DATA STRUCTURES

39

LOCK-FREE ALGORITHMS

 Can be more efficient and scalable than locking

 Not the same as wait-free

 Lock-free guarantees system progress

 Wait-free guarantees thread progress

 Operation must have bound on number of steps till

completion

 Very rare as their performance is generally low

 Good for many reads, few writes

 Most attempt operation then retry if changed

occurred during operation 40

COMPARE-AND-SWAP

CMPXCHG ON X86

 Atomically compares contents of memory location

to a given value, if they match it updates value

 Hardware support handles this operation

atomically

 Integral in lock free structures

41

int compare_and_swap (int* register, int oldval, int newval)
{

int old_reg_val = *register;
if (old_reg_val == oldval)

*register = newval;
return old_reg_val;

}

LOCK-FREE LINKED LIST – INSERTION

42

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location,

note left and right

nodes

LOCK-FREE LINKED LIST – INSERTION

43

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location,

note left and right

nodes

 Set new.next = right

LOCK-FREE LINKED LIST – INSERTION

44

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

 Create new node

 do

 Find insertion location,

note left and right

nodes

 Set new.next = right

 If(CAS &left.next,

right, new) then return

LOCK-FREE LINKED LIST – INSERTION

45

 Create new node

 do

 Find insertion location,

note left and right

nodes

 Set new.next = right

 If(CAS &left.next,

right, new) then return

 while(true)

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST

 Delete creates problems

 Naive Delete

 Fails for concurrent insert

46

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST

 Correct delete requires two compares

 First mark deleted node as „logically deleted‟

 Then „physically delete‟ the node

47

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

PERFORMANCE OF LOCK-FREE LINKED LIST

48
1 million random insertion, deletions on keys 0 - 8191

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE ABA PROBLEM – 1

49

Thread 1:

Insert 20 #interupted

Thread 2:

...

ABA PROBLEM – 2

50

Thread 1:

Insert 20 #partial completion

...

Thread 2:

...

delete 30 address A

ABA PROBLEM – 3

51

Thread 1:

Insert 20 #partial completion

...

...

Thread 2:

...

delete 30 #address A

insert 15 #address A

ABA PROBLEM – 4

52

Thread 1:

Insert 20 #partial completion

...

...

Insert 20 #finishes and

#improperly succeeds

Thread 2:

...

delete 30 #address A

insert 15 #address A

SOLUTIONS TO ABA

 Keep “tag” bits on each pointer – ABA‟

 Requires double-word CAS

 Use reference counts on cells (Valois)

 Only reuse cell when reference count = 0

 Use „Load Linked‟ and „Store Conditional‟

 LL returns value of memory location

 SC stores only if no updates occurred since LL

53

PERFORMANCE NOT ALWAYS GREAT

54

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

1 million random insertion, deletions on keys 0 - 255

NEXT TIME…
Multi-process synchronization problems

•Producer Consumer!

•Reader-Writer!

•DOALL!

55

APPENDIX

More interesting topics56

AVOIDING ERRORS WITH PTHREADS

 Create data structures that handle most of the

synchronization for you

 Code the locks once correctly, then don‟t worry about

them anymore

 For example:

 Create a synchronized list

 Perform locks inside add/remove/search functions

 Synchronization now transparent to rest of program

57

SMART PROGRAMMING WITH PTHREADS

 Locks serialize the program, want to use as little

as possible

 Only place lock around critical area

 Less time spent holding lock, less lock contention

 Locks have high overhead

 Constant locking and unlocking can result in poor

performance

58

WHAT IS A DATA RACE?

 Two concurrent accesses to a memory location at least

one of which is a write.

 Example: Data race between a read and a write

int x = 1;

Parallel.Invoke(

() => { x = 2; },

() => { System.Console.WriteLine(x); }

);

 Outcome nondeterministic or worse

 may print 1 or 2, or arbitrarily bad things on a relaxed

memory model

writes

x
reads x

59
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

DATA RACES AND HAPPENS-BEFORE

 Example of a data race with two writes:

int x = 1;

Parallel.Invoke(() => { x = 2; },

() => { x = 3; });

System.Console.WriteLine(x);

 We visualize the ordering of memory accesses with a

happens-before graph:

There is no path between

(write 2 to x) and (write 3 to x),

thus they are concurrent,

thus they create a data race

(note: the read is not in a data race)

write 2 to x write 3 to x

write 1 to x

read x

60
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

QUIZ: WHERE ARE THE DATA RACES?

Parallel.For(1,2,
i => {

x = a[i];
});

Parallel.For(1,2,
i => {

a[i] = x;
});

Parallel.For(1,2,
i => {

a[i] = a[i+1];
});

61
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

QUIZ: WHERE ARE THE DATA RACES?

Parallel.For(1,2,
i => {

x = a[i];
});

reads

a[0]
writes x

reads

a[1]
writes xrace

Parallel.For(1,2,
i => {

a[i] = x;
});

reads x

writes

a[0]

reads x

writes

a[1]

Parallel.For(1,2,
i => {

a[i] = a[i+1];
});

reads

a[2]
writes

a[1]

reads

a[3]
writes a[2]

Race between two

writes.

Race between a

read and a write.
No Race between

two reads.

62
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

SPOTTING READS & WRITES

 Sometimes a single statement performs multiple

memory accesses

6/22/2010
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

63

When you execute

a[i] = x

there are actually three

reads and one write:

reads x

reads a

reads i

writes a[i]

When you execute

x += y

there are actually two

reads and one write:

reads x

reads y

writes x

DATA RACES CAN BE HARD TO SPOT.

 Code looks fine... at

first.

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

64
Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

DATA RACES CAN BE HARD TO SPOT.

 Problem: we have to follow calls... even if they look

harmless at first (like a constructor).

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

class Foo {
private static int counter;
private int unique_id;
public Foo()

{
unique_id = counter++;
}

}
65

Practical Parallel and Concurrent

Programming DRAFT: comments to

msrpcpcp@microsoft.com

6/22/2010

