® THREAD PARALLELISM
Stephen Beard

LECTURE OUTLINE

Introduction to Threads

Correctness

Performance

® INTRODUCTION TO THREADS
9

WHAT IS A THREAD?

WHAT IS A THREAD?

code code data files

reqgisters registers | registers ||| registers

stack stack stack

single-threaded multithreaded

THREADS VS. PROCESSES

(Generalities)
Process Thread
“Heavyweight” “Lightweight”
Slower context switches Faster context switches
Expensive IPC Direct communication
Independent Share state and resources
Insecure
Secure Shared memaory space

Protected memory space

USER THREADS AND KERNEL THREADS

User Thread Kernel Thread
Implemented in software Managed by OS
library

Transparent to the OS
Will block other threads

Library typically uses
non-blocking calls then
manages threads

Will not block other
threads

Slower to swap than
Fast to create and manage user threads

Do not benefit from

multithreading or

multiprocessing

THREAD IMPLEMENTATIONS

Many to One

One to One

® WHY USE THREADS?

WHY USE THREADS?

Interactive Programs — Avoid blocking!

10,000,000

1,000,000

Dual-Core Itanium 2

Modern Hardware

100,000

Intel

(sources: Inte

CPU”

, Wikipe

Trends
dia, K. Olukotun)

1s designed for
thread level

parallelism

(TLP) 1,000

100

10

| Transistors (000)
@ Clock Speed (MHz)

Source: Tom Ball - PPCP-54454 01970

L ® @
e o0 A Power (W)
@ Perf/Clock (ILP)
l \
1975 1980 1985 1990 1995 2000 2005 2010

HARDWARE FOR TLP

o Chip Multi-Processors

o GPUs

o Clusters

o Cloud Computing

o Multithreading

Cloud Computing

Database

Cloud Computing
everything and the kitchen sink

Kitchen
Sink

MULTI-THREADING TERMS

Superscalar — ILP mechanism for performing
multiple instructions concurrently (One CPU with
multiple functional units)

Fine-Grained — Switch between threads on each cycle

Coarse-Grained — Switch between threads on ‘costly’
stalls (such as L2 cache miss)

Multiprocessing — Multi-core

Simultaneous — Multiple threads running
concurrently on single processor

MULTITHREADING

Fine-Grained Multiprocessing Simultaneous
Superscalar Coarse-Grained Multithreading

EE] EEL] Bl EENN EEN
RO NNOO BUO0 NN IDE%
O0O00 Emon eSS
0 EEED BRSO
B NNOIL IDDD
EREE NNNL DDNI

EELL NN NN DDID
LI ot Cetty Illl
EEEL B DL IDID BRSO
UL EEEEEE LI IHDD NN
L) EEEL EEL L IDID l%%ﬂ
SECL T NCIOIE T LI DDH.
I Thread 1 [|Thread 3 #H Thread 5 @
Thread 2 # Thread 4 [] Idle slot

Source: Dr. Chris Lupo — CPE520 Advanced Computer Architecture Winter 2010

® PTHREADS

A POSIX Staridand for fetter Multignocessing

Pthre: ds

Programming
prm— Hrasadfiord Nicheals EXCk Fvatr & facguiine Prowke Baerod

OReilly & Associates, Inc.

PTHREADS (POSIX THREADS)

C library that provides
Thread management :
Shared Memory ng - ng
Locks Wlth PO W

)
. ':l' “,‘-’/
In LlnuX Da/\n/dR, B_!-!lt"hh()i
One to One -

Created using ‘clone’

o SIMPLE PTHREAD EXAMPLE

METHODS OF THREAD COMMUNICATION

Shared Memory -Memory that may be

simultaneously accessed by multiple threads

int gInt;
spawn tl1, t2;

tl: t2:

glnt 5

int 1Int = gInt
print 1Int -> 5

METHODS OF THREAD COMMUNICATION

Message Passing - Threads pass messages for data

transfer and synchronization

tl: t2:

send 5-\\\\-\\\\\\\ﬁi",
recv 1Int

Print 1lInt -> 5

@® THREAD CORRECTNESS
9

RACE CONDITIONS

Unsynchronized access to shared state from
multiple threads whose outcome depends upon
the order of access

rl.check, r2.check, r1.move, r2.move,CRASH

1
r _ >

nb

r2

Source: Tom Ball - PPCP-54454

® RACE CONDITION PROGRAM

oy T

SYNCHRONIZATION & 5 Y 4

Want to be able to control access to shared
memory

Several methods exist:
Mutex
Semaphore
Monitors

Barriers

NAIVELY FIXING OUR ROBOTS

lock() lock()
rl.check()
unlock() e
r2.check()
.. unlock()
lock() lock()
rl.move()
unlock()
r2.move()
unlock()

CRASH

ATOMICITY

o A statement sequence S 1s atomic i1f S’s effects
appear to other threads as if S executed without
Interruption

FIXING OUR ROBOTS

lock()
rl.check()

rl.move()

unlock()

rl

r2

lock()

r2.check()
unlock()

—

rl

r2

® MuTEX EXAMPLE

MUTEX IMPLEMENTATION - HARDWARE

Using XCHG on x86 to implement a mutex

XCHG exchanges two operands. If a memory operand
1s 1nvolved, BUS LOCK 1s asserted for the duration of
the exchange.

LOCK: ; mutex pointer is in EBX; clobbers EAX
XOR EAX, EAX ; Set EAX to ©
XCHG EAX, [EBX]
AND EAX, EAX ; Test for 1
JZ LOCK ; 1f we got a zero, spin-wait
RET

UNLOCK: ; mutex pointer is in EBX

MOV [EBX], 1
RET

MUTEX IMPLEMENTATION - SOFTWARE

Peterson’s Algorithm
Works for two processes, but can generalize
Does not work with out-of-order execution

flag[9] = 0;
flag[1] = 0;
Po: flag[@] = 1; P1: flag[l] = 1;
turn = 1; turn = 0;
while (flag[1l] == 1 && turn == 1) while (flag[@] == 1 && turn == 0)
{ {
// busy wait // busy wait
} }
// critical section // critical section
// end of critical section // end of critical section

flag[@] = ©; flag[1l] = O;

MUTEX IMPLEMENTATION

Exact locking mechanism 1s hardware dependent

If a thread fails to acquire lock
Waits for lock
Spin vs Yield
How to handle multiple threads waiting on single lock
Queue
Scheduler
Reentrant Locks

Allowed to acquire same lock multiple times
Must be released same number of times

OTHER ISSUES WITH LOCKS

Dead-lock — Circular waiting on locks
Live-lock — Locks state changing with no progress

Lock contention — Many threads require access to
single lock

Lock overhead — Locking mechanisms are slow

Priority Inversion — Low priority thread holds lock,
prevents progress of high priority

Convoying — Lock contention with slowest threads
acquiring the lock first

@® PERFORMANCE
9

® THREAD GRANULARITY

THREAD GRANULARITY

Better to have lots of threads doing a little work
or a few threads doing lots of work?

Depends on:
o How much communication overhead will result?
o Implementation of threads

o Hardware

JACOBI ITERATIONS

For a matrix, on each iteration element’s new
value = average of neighbors old values

How many threads?

JACOBI IN C USING MPI

Time (seconds)

Row for 800 iterations

0 200 400 600

Space Size

800

1000

1200

Erlang

MPI

JACOBI IN ERLANG

400 Iterations

140

120 /
100

&0 /

600

W
g /
= 60

40

20

D I I I I I]
0 100 200 300 400 500
Space Size

=2 Proc
=4 Proc
==& Proc
w1 6 Proc

® LOoCKING GRANULARITY

LOCKING GRANULARITY

Better to lock the entire structure, or parts?
Lock entire list when performing an operation

Only alter one lock per access to list
One thread in list blocks all others from accessing list

Lock each element of the list, hand-over-hand
Threads can work on different parts of the list concurrently
Lock per element, or group of elements
Threads in front of list prevent access to rest of list

@ L0oCK FREE DATA STRUCTURES

LOCK-FREE ALGORITHMS

Can be more efficient and scalable than locking

Not the same as wait-free
Lock-free guarantees system progress

Wait-free guarantees thread progress

Operation must have bound on number of steps till
completion

Very rare as their performance is generally low

Good for many reads, few writes

Most attempt operation then retry if changed
occurred during operation

COMPARE-AND-SWAP
CMPXCHG ON x86

Atomically compares contents of memory location
to a given value, if they match it updates value

int compare_and_swap (int* register, int oldval, int newval)

{
int old_reg val = *register;
if (old_reg val == oldval)
*register = newval;
return old_reg val;

}

Hardware support handles this operation
atomically

Integral in lock free structures

LOCK-FREE LINKED LIST — INSERTION

o Create new node

o do A
» Find insertion location, (3o] J)

note left and right

nodes B

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST — INSERTION

Create new node

do
Find insertion location, (#] 2 (10[A2 (_j:;—--
note left and right R}
nodes _

A

N
(20] A}~
B

Set new.next = right

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST — INSERTION

Create new node

do

Find insertion.location, &_--*@AD 0
note left and right 3

(0])~
nodes .

A

Set new.next = right =l &

w[A)”

B

A
If(CAS &left.next, (___4_{30| } (r])
&

right, new) then return a}

B

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST — INSERTION

Create new node

do
Find insertion location,
note left and right
nodes
A
L —ld)
| @
Set new.next = right B
If(CAS &left.next,

right, new) then return

while(true)

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST

Delete creates problems
Naive Delete

Fails for concurrent insert

.,
@

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE LINKED LIST

Correct delete requires two compares
First mark deleted node as ‘logically deleted’

Then ‘physically delete’ the node

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

PERFORMANCE OF LOCK-FREE LINKED LIST

140
120
100 ' e w

i o - = ras - e - '_L a ’
Valois - / L
ap Lo _+-.._____.-— |'\-.___\ *{ |

60 T

CPU time / seconds
=
=
(] 1]
=

40 | T

0 2 = G 8 10 12 14 16

Mumber of threads
1 million random insertion, deletions on keys 0 - 8191

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

LOCK-FREE ABA PROBLEM — 1

Thread 1: Thread 2:
Insert 20 #interupted

A B
(1] 3 ~(10]AJ =(30]BJ -)

ABA PROBLEM — 2
Thread 1: Thread 2:

Insert 20 #partial completion
delete 30 address A

ABA PROBLEM — 3
Thread 1: Thread 2:

Insert 20 #partial completion
delete 30 #address A
insert 15 #address A

A B
(] J -(10]AJ =(1s]BJ ()

(20]A)—

ABA PROBLEM — 4

Thread 1: Thread 2:

Insert 20 #partial completion

delete 30 #address A

insert 15 #address A
Insert 20 #finishes and

#improperly succeeds

SOLUTIONS TO ABA

Keep “tag” bits on each pointer — ABA’
Requires double-word CAS

Use reference counts on cells (Valois)
Only reuse cell when reference count = 0

Use ‘Load Linked’ and ‘Store Conditional’

LL returns value of memory location
SC stores only if no updates occurred since LL

PERFORMANCE NOT ALWAYS GREAT

80

[l'N e

Yalgis (ref-count)
60 | A—E—a—_ g B B8

50 - E/E

an L Mew (ref-count)

30

CPU time / seconds

20
10 Mutex

e T Valo

i : e
0 i:;_;l s — ., S S S— — — .

0 2 4 5 8 10 12 14 16
Mumber of threads @

1 million random insertion, deletions on keys 0 - 255

Harris, “A pragmatic implementation of non-blocking linked-lists”, 2001 (15th International Symposium on Distributed Computing)

@ NEXT TIME...
Multi-process synchronization problems
-Producer Consumer!
' -Reader-Writer!
-DOALL!

® APPENDIX

e More interesting topics

AVOIDING ERRORS WITH PTHREADS

Create data structures that handle most of the
synchronization for you

Code the locks once correctly, then don’t worry about
them anymore

For example:
Create a synchronized list
Perform locks inside add/remove/search functions
Synchronization now transparent to rest of program

SMART PROGRAMMING WITH PTHREADS

Locks serialize the program, want to use as little
as possible

Only place lock around critical area
Less time spent holding lock, less lock contention

Locks have high overhead

Constant locking and unlocking can result in poor
performance

WHAT 1S A DATA RACE?

o Two concurrent accesses to a memory location at least
one of which 1s a write.

o Example: Data race between a read and a write

@

int x = 1;

Parallel.Invoke(@
O = {x=2;1,
() => { Systen. Conso]e writeLine(x);

)
o Outcome nondeterministic or worse

» may print 1 or 2, or arbitrarily bad things on a relaxed
memory model

Practical Parallel and Concurrent
Programming DRAFT: comments to
msroecopep@microsoft.com

6/22/2010

DATA RACES AND HAPPENS-BEFORE

Example of a data race with two writes:

int x = 1;
Parallel.Invoke(() => { x = 2; 1},
O ={x=3; });

System.Console.wWriteLine(x);

We visualize the ordering of memory accesses with a
happens-before graph:

There 1s no path between write 1 to x

(write 2 to x) and (write 3 to x), / \

thus they are concurrent,

thus they create a data race write 2t< /wrlte Jtox
(note: the read is not in a data race)
read x

Practical Parallel and Concurrent
Programming DRAFT: comments to
msroecopep@microsoft.com

6/22/2010

QUIZ: WHERE ARE THE DATA RACES?

Pparallel.For(1,?2, Pparallel.For(1,?2, Pparallel.For(1,2,
1 = { 1 = { 1 = {

X = al[i]; ali] = x; ali] = a[i+1];
s s 1)

Practical Parallel and Concurrent
Programming DRAFT: comments to
msroecopep@microsoft.com

6/22/2010

QUIZ: WHERE ARE THE DATA RACES?

Pparallel.For(1,?2, Pparallel.For(1,?2, Pparallel.For(1,2,
i = { i => { 1= {
X = al[i]; ali] = al[i] = al[i+1];
s s 1)
reads reads reads X reads X reads reads
v v
%L?l]tes @%&l}l]ies X ertes ertes %[rzl]tes M es al2

N

Race between two
writes.

6/22/2010

PN

No Race between
two reads.

Practical Parallel and Concurrent
Programming DRAFT: comments to
msroecopep@microsoft.com

N

Race betwee
read and a w

SPOTTING READS & WRITES

o Sometimes a single statement performs multiple
memory accesses

Practical Parallel and Concurrent
Programming DRAFT: comments to
msroenep@microsoft.com

6/22/2010

DATA RACES CAN BE HARD TO SPOT.

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

o Code looks fine... at
first.

Practical Parallel and Concurrent
Programming DRAFT: comments to
msroecopep@microsoft.com

6/22/2010

DATA RACES CAN BE HARD TO SPOT.

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

Problem: we have to follow calls... even if they look
harmless at first (like a constructor).

class Foo {)
private static ‘int counter; J
private int unique_ id;
public Foo()
{ : : £ ..
unique_id = counter++;)

}

Practical Parallel and Concurrent
Programming DRAFT: comments to
msroecopep@microsoft.com

6/22/2010

Data
Race
on

static
field !

