
Memory Model

COS 597C
10/5/2010

Example

Thread!

Memory Model COS 597C, Fall 2010 2

a = 26;!

Flag = 1;!

a = Flag = 0!

Example

Thread!

Memory Model COS 597C, Fall 2010 3

a = 26;!

Flag = 1;!

Flag = 1;!

a = 26;!

a = Flag = 0!

✔

Compiler Transformation

Example

Thread 1! Thread 2!

Memory Model COS 597C, Fall 2010 4

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

What is the value of b after execution?

a = Flag = 0!

Example

Thread 1! Thread 2!

Memory Model COS 597C, Fall 2010 5

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

What is the value of b after execution?

a = Flag = 0!

26 ?

Example

Thread 1! Thread 2!

Memory Model COS 597C, Fall 2010 6

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

What is the value of b after execution?

a = Flag = 0!

0 !!

How could this happen?

Memory Model COS 597C, Fall 2010 7

  Compilers can reorder instructions

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

How could this happen?

Memory Model COS 597C, Fall 2010 8

  Compilers can reorder instructions

Thread 1! Thread 2!

Flag = 1;!

a = 26;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0

(1)! (2)!

(3)!

(4)!

How could this happen?

Memory Model COS 597C, Fall 2010 9

  Lets disable compiler reordering. How about now?

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

How could this happen?

Memory Model COS 597C, Fall 2010 10

  Lets disable compiler reordering. How about now?

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0 !!

How could this happen?

Memory Model COS 597C, Fall 2010 11

  Hardware out-of-order execution

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0 !!

a = 26;!

Flag = 1;!

……!

Reorder buffer of P1!

How could this happen?

Memory Model COS 597C, Fall 2010 12

  Hardware out-of-order execution

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0 !!

Flag = 1;!

a = 26;!

……!

Reorder buffer of P1!

Things could go crazy …..

If we don’t define what is a valid optimization

Memory Model COS 597C, Fall 2010 13

What is Memory (Consistency) Model?
  “A formal specification of how the memory system will

appear to the programmer, eliminating the gap between
the behavior expected by the programmer and the actual
behavior supported by a system.” [Adve’ 1995]

  Memory model specifies:
  How threads interact through memory
  What value a read can return
  When does a value update become visible to other threads
  What assumptions are allowed to make about memory when

writing a program or applying some program optimization

Memory Model COS 597C, Fall 2010 14

Why do We Care?
  Memory model affects:

  Programmability
  Performance
  Portability

Memory Model COS 597C, Fall 2010 15

Program Machine
Code

JIT

Hardware

Compiler

Memory Model 1 Memory Model 2

The Single Thread Model
  Memory access executes one-at-a-time in program order
  Read returns value of last write
  For hardware & compiler reordering

  Optimization must respect data/control dependences
  Memory operations must follow the order the program is

written

  Easy to program and optimize

Memory Model COS 597C, Fall 2010 16

Strict Consistency Model

Memory Model COS 597C, Fall 2010 17

  Any read to memory location X returns the value stored
by the latest write to X

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 1!

R2! 1!

X! 1!

Timeline

✔

Strict Consistency Model

Memory Model COS 597C, Fall 2010 18

  Any read to memory location X returns the value stored
by the latest write to X

Thread 1! Thread 2!

X = 1;!
……!

R1 = X;!
……!
R2 = X;!

R1! 0!

R2! 1!

X! 1!

Timeline

✔

Strict Consistency Model

Memory Model COS 597C, Fall 2010 19

  Any read to memory location X returns the value stored
by the latest write to X

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 0!

R2! 1!

X! 1!

Timeline

✗

Sequential Consistency
  Definition: [Lamport’ 1979]

the result of any execution is the same as:
  The operations of each thread appears in program order
  Operations of all threads were executed in some sequential

order atomically

  Atomicity
  Isolation : no one sees partial memory update
  Serialization : memory access appear to occur at the same time

for everyone

Memory Model COS 597C, Fall 2010 20

Under Sequential Consistency Model

Memory Model COS 597C, Fall 2010 21

  The operations of each thread appears in program order
  Operations of all threads were executed in some sequential

order atomically

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 0!

R2! 1!

X! 1!

Timeline

✔

Under Sequential Consistency Model

Memory Model COS 597C, Fall 2010 22

  The operations of each thread appears in program order
  Operations of all threads were executed in some sequential

order atomically

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 1!

R2! 0!

X! 1!

Timeline

✗

Example

Memory Model COS 597C, Fall 2010 23

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Example

Memory Model COS 597C, Fall 2010 24

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Flags1! 1!

Flags2! 0!

Example

Memory Model COS 597C, Fall 2010 25

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Flags1! 1!

Flags2! 1!

Example

Memory Model COS 597C, Fall 2010 26

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Flags1! 0!

Flags2! 1!
Violation !!!!

How do we violate
sequential consistency?

Memory Model COS 597C, Fall 2010 27

Very EASY !

 Lets take a look at several hardware/
compiler optimizations that are

commonly used for uniprocessor

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 28

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

Buffer! Buffer!

Flag1! 0!

Flag2! 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 29

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 30

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

(2)  
Read  
Flag1!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 31

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

(3)
Write
Flag1!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

(2)  
Read  
Flag1!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 32

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

(3)
Write
Flag1!

(4)
Write
Flag2!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

(2)  
Read  
Flag1!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 33

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Flag = a = 0;!

Memory!Flag = 0! a = 0!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 34

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Memory!Flag = 0! a = 0!

(2) read Flag!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 35

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Memory!Flag = 0! a = 0!

(2) read Flag!
(3) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 36

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Memory!Flag = 0! a = 0!

(4)!
write  
a!

(2) read Flag!
(3) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 37

  Non-blocking reads

T1! T2!

Memory!Flag = 0! a = 0!

(1) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 38

  Non-blocking reads

T1! T2!

Memory!Flag = 0! a = 0!

(2)!
write  
a!

(1) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 39

  Non-blocking reads

T1! T2!

(3)!
write  
Flag!

Memory!Flag = 0! a = 0!

(2)!
write  
a!

(1) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 40

  Non-blocking reads

T1! T2!

(3)!
write  
Flag!

Memory!Flag = 0! A = 0!

(2)!
write  
a!

(1) read a!
(4) read Flag!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Architecture with Private Caches

Memory Model COS 597C, Fall 2010 41

To comply with Sequential Consistency, we need:
  Cache coherency protocol

  A write is eventually made visible to all processors
  Writes to the same location appear to be seen in the same

order by all processors (serialization) [Gharachorloo’90]

  Ability to detect the completion of write operations
  Acknowledgement messages
  Invalid or update messages

  The illusion of atomic writes

Write atomicity

Memory Model COS 597C, Fall 2010 42

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

What is the value of R1 and R2 after execution?!

A = B = C = 0;!

Write Atomicity

Memory Model COS 597C, Fall 2010 43

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 1! R2 = 1!

✔

Write Atomicity

Memory Model COS 597C, Fall 2010 44

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 2! R2 = 2!

✔

Write Atomicity

Memory Model COS 597C, Fall 2010 45

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 1! R2 = 2!

✗ Sequential Consistency:
operation from all threads must appear
In some sequential order atomically

Violation !!!!

Compilers Optimization that Violates SC

Memory Model COS 597C, Fall 2010 46

  Compiler reordering must respect data and control
dependencies

  Code motion

Thread 1! Thread 2!

for(i=0;i<10;i++)!
 *a = i;!

while (true)!
 b = *a;!

Load from a cannot be
moved out of the
loop

Compilers Optimization that Violates SC

Memory Model COS 597C, Fall 2010 47

  Compiler reordering must respect data and control
dependencies

  Code motion
  Common sub-expression elimination

Thread 1! Thread 2!

a = 6;!

Flag = 1;!

c = a – 1;!

while (Flag == 0) {};!

b = a - 1;!

(a-1) cannot be  
eliminated for  
assignment of b

Compilers Optimization that Violates SC

Memory Model COS 597C, Fall 2010 48

  Compiler reordering must respect data and control
dependencies

  Code motion
  Common sub-expression elimination
  Register allocation

Thread 1! Thread 2!

a = 6;!

Flag = 1;!

while (Flag == 0) {};!

b = a;!

Flag cannot be
allocated to a
register

Sequential Consistency: Summary

Memory Model COS 597C, Fall 2010 49

  Sequential consistency does not guarantee data race free

  Possible hardware/compiler optimizations allowed
  Hardware/software prefetching
  Speculating read values

  Determining which instructions are allowed to be
reordered remain an open question

Thread 1! Thread 2!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

Data race:
•  two memory access to the same location
•  one is a write
•  they can occur simultaneously

Relaxed Memory Models

Memory Model COS 597C, Fall 2010 50

  Key points
  Program order for different memory addresses
  Write atomicity

  Possible relaxations
  Relaxation on program order (different memory locations)

  Relax write to read program order
  Relax write to write program order
  Relax read to read and read to write program order

  Relaxation on write atomicity
  Read other’s write early
  Read own write early

  Safety nets, such as fence

……
code

fence

code
……

✗ ✗

Major Relaxed Hardware Models

Memory Model COS 597C, Fall 2010 51

Relax W->R W->W R->RW Read others’
write early

Read own
write early Safety Net

SC ✔
IBM 370 ✔ Serial inst

TSO(x86) ✔ ✔ RMW, fence

PC ✔ ✔ ✔ RMW

PSO ✔ ✔ ✔ RMW

WO ✔ ✔ ✔ ✔ synch

RCsc ✔ ✔ ✔ ✔ lock, nsync,
RMW RCpc ✔ ✔ ✔ ✔ ✔

Alpha ✔ ✔ ✔ ✔ MB, WMB

RMO ✔ ✔ ✔ ✔ MEMBAR

PowerPC ✔ ✔ ✔ ✔ ✔ synch

Processor Consistency

Memory Model COS 597C, Fall 2010 52

  Writes done by a single processor are received by other
processors in the same order as they are issued.

  Writes from different processors may be seen in different
order by different processors.

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 1! R2 = 2!✔

Weak Ordering Model [Dubois’ 86]

Memory Model COS 597C, Fall 2010 53

  Classification of memory operations
  Data operations: load, store…
  Synchronization operations: lock unlock etc

  How does it work ?
  All pre-issued operations must complete on all processors

before executing a synchronization operation
  Execution of synchronization operations must follow program

order
  Memory operations between synchronization operations can

be reordered

Data-Race-Free-0 Model

Memory Model COS 597C, Fall 2010 54

  A program is data-race-free on a particular input if no
sequential consistent execution results in a data race

  A new definition of weak ordering [Adve’90 ISCA]
  Advantage:

  Simple programmability of sequential consistency
  Implementation flexibility of relaxed models

  Sequential consistency for DRF is widely used
  C++ memory model

Relaxed Memory Model: Summary

Memory Model COS 597C, Fall 2010 55

  Relaxed memory model
  Relaxes restrains on the order of some memory operations
  Allows some hardware/compiler optimization

  Why do we use relaxed memory model : performance
  Why do we not use relaxed memory model : complexity

CASE STUDY: The C++ Memory Model
  Adaption of DRF0

  Sequential consistency for race-free programs
  Behavior of a program with data race is undefined (no benign

data races in C++)

  Data operations:
load, store

  Synchronization operations:
lock, unlock, atomic load, atomic store, atomic read-modify-write

  Atomic operations must appear sequentially consistent

[Boehm’s PLDI 2008: Foundations of the C++ Concurrency Memory Model]

Memory Model COS 597C, Fall 2010 56

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 57

  Compiler code reordering allowed when:
For memory operations M1 and M2
  M1 is a data operation and M2 is a read synchronization

operation
  M1 is write synchronization and M2 is data
  M1 and M2 are both data with no synchronization sequence-

ordered between them.
  M1 is data and M2 is the write of a lock operation
  M1 is unlock and M2 is either a read or write of a lock.

  Hardware optimization allowed for non-atomic writes

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 58

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

Can the program assert?!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 59

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

Can the program assert?!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 60

  Semantic of trylock

Yes, if the compiler reorders  
code in T1!

Thread 1! Thread 2!

lock(l); !

X = 42;!

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 61

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

We can use a fence, but it is  
unfair for properly used trylock!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 62

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

Solution: in C++ memory model, trylock does not !
guarantee to reveal anything about the state  
of the lock!

CASE STUDY: The JAVA Memory Model
  JAVA: the first language specification attempts to

incorporate memory model
  What JAVA should do?

  Define semantics of all programs
  Support execution of untrusted “sandboxed” code

  Sequential consistency for DRF
  Synchronization implemented using monitors

  Volatile
  synchronized primitive

  JAVA memory model does not guarantee deadlock free

Memory Model COS 597C, Fall 2010 63

CASE STUDY: The JAVA Memory Model

Memory Model COS 597C, Fall 2010 64

  JAVE bugs found
historically
  Detached thread
  Double-checked locking

Helper helper;!

Helper getHelper() {!

!if (helper==null) {!

! synchronized(this) {!

! !if (help==null)!

! ! helper=new Helper();!

! } !

!}!

 return helper;!

}!

Lessons Learnt from C++/JAVA

Memory Model COS 597C, Fall 2010 65

  SC for DRF is the minimal baseline
  Specifying semantics for programs with data races is

extremely HARD
  Simple optimization may introduce unintended

consequences
  State-of-the-art is still broken

  Abandon shared memory?
  Hardware co-designed with high-level memory models?
  Any volunteer for fixing the whole thing?

Conclusion

Memory Model COS 597C, Fall 2010 66

  Memory model is very important and confusing
  Memory model specifies what hardware/compiler can do

and cannot do
  Sequential consistency is very intuitive yet prohibits

performance
  Relaxed memory models allows some optimization but

introduces programming complexity
  Don’t try to be clever, unless you are clever enough

Advanced Topics

Memory Model COS 597C, Fall 2010 67

  Why threads cannot be implemented as a library
  Ongoing projects:

  Deterministic Parallel JAVA (DPJ)
  Functional languages
  DeNoVo hardware project

Pthreads

Memory Model COS 597C, Fall 2010 68

  Some open source pthread implementation

References

Memory Model COS 597C, Fall 2010 69

  Boehm’s “Foundations of the C++ Concurrency Memory
Model”

  Pugh’s “Fixing the JAVA Memory Model”
  Adve’s “Shared Memory Consistency Models: A Tutorial”
  Dubois’ “Memory Access Buffering in Multiprocessors”
  Bohem’s “Threads cannot be implemented as a library”

