
Memory Model

COS 597C
10/5/2010

Example

Thread!

Memory Model COS 597C, Fall 2010 2

a = 26;!

Flag = 1;!

a = Flag = 0!

Example

Thread!

Memory Model COS 597C, Fall 2010 3

a = 26;!

Flag = 1;!

Flag = 1;!

a = 26;!

a = Flag = 0!

✔

Compiler Transformation

Example

Thread 1! Thread 2!

Memory Model COS 597C, Fall 2010 4

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

What is the value of b after execution?

a = Flag = 0!

Example

Thread 1! Thread 2!

Memory Model COS 597C, Fall 2010 5

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

What is the value of b after execution?

a = Flag = 0!

26 ?

Example

Thread 1! Thread 2!

Memory Model COS 597C, Fall 2010 6

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

What is the value of b after execution?

a = Flag = 0!

0 !!

How could this happen?

Memory Model COS 597C, Fall 2010 7

  Compilers can reorder instructions

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

How could this happen?

Memory Model COS 597C, Fall 2010 8

  Compilers can reorder instructions

Thread 1! Thread 2!

Flag = 1;!

a = 26;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0

(1)! (2)!

(3)!

(4)!

How could this happen?

Memory Model COS 597C, Fall 2010 9

  Lets disable compiler reordering. How about now?

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

How could this happen?

Memory Model COS 597C, Fall 2010 10

  Lets disable compiler reordering. How about now?

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0 !!

How could this happen?

Memory Model COS 597C, Fall 2010 11

  Hardware out-of-order execution

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0 !!

a = 26;!

Flag = 1;!

……!

Reorder buffer of P1!

How could this happen?

Memory Model COS 597C, Fall 2010 12

  Hardware out-of-order execution

Thread 1! Thread 2!

a = 26;!

Flag = 1;!

while (Flag != 1)
{};!

b = a;!

a = Flag = 0!

0 !!

Flag = 1;!

a = 26;!

……!

Reorder buffer of P1!

Things could go crazy …..

If we don’t define what is a valid optimization

Memory Model COS 597C, Fall 2010 13

What is Memory (Consistency) Model?
  “A formal specification of how the memory system will

appear to the programmer, eliminating the gap between
the behavior expected by the programmer and the actual
behavior supported by a system.” [Adve’ 1995]

  Memory model specifies:
  How threads interact through memory
  What value a read can return
  When does a value update become visible to other threads
  What assumptions are allowed to make about memory when

writing a program or applying some program optimization

Memory Model COS 597C, Fall 2010 14

Why do We Care?
  Memory model affects:

  Programmability
  Performance
  Portability

Memory Model COS 597C, Fall 2010 15

Program Machine
Code

JIT

Hardware

Compiler

Memory Model 1 Memory Model 2

The Single Thread Model
  Memory access executes one-at-a-time in program order
  Read returns value of last write
  For hardware & compiler reordering

  Optimization must respect data/control dependences
  Memory operations must follow the order the program is

written

  Easy to program and optimize

Memory Model COS 597C, Fall 2010 16

Strict Consistency Model

Memory Model COS 597C, Fall 2010 17

  Any read to memory location X returns the value stored
by the latest write to X

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 1!

R2! 1!

X! 1!

Timeline

✔

Strict Consistency Model

Memory Model COS 597C, Fall 2010 18

  Any read to memory location X returns the value stored
by the latest write to X

Thread 1! Thread 2!

X = 1;!
……!

R1 = X;!
……!
R2 = X;!

R1! 0!

R2! 1!

X! 1!

Timeline

✔

Strict Consistency Model

Memory Model COS 597C, Fall 2010 19

  Any read to memory location X returns the value stored
by the latest write to X

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 0!

R2! 1!

X! 1!

Timeline

✗

Sequential Consistency
  Definition: [Lamport’ 1979]

the result of any execution is the same as:
  The operations of each thread appears in program order
  Operations of all threads were executed in some sequential

order atomically

  Atomicity
  Isolation : no one sees partial memory update
  Serialization : memory access appear to occur at the same time

for everyone

Memory Model COS 597C, Fall 2010 20

Under Sequential Consistency Model

Memory Model COS 597C, Fall 2010 21

  The operations of each thread appears in program order
  Operations of all threads were executed in some sequential

order atomically

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 0!

R2! 1!

X! 1!

Timeline

✔

Under Sequential Consistency Model

Memory Model COS 597C, Fall 2010 22

  The operations of each thread appears in program order
  Operations of all threads were executed in some sequential

order atomically

Thread 1! Thread 2!

X = 1;!
……!

……!
R1 = X;!
R2 = X;!

R1! 1!

R2! 0!

X! 1!

Timeline

✗

Example

Memory Model COS 597C, Fall 2010 23

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Example

Memory Model COS 597C, Fall 2010 24

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Flags1! 1!

Flags2! 0!

Example

Memory Model COS 597C, Fall 2010 25

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Flags1! 1!

Flags2! 1!

Example

Memory Model COS 597C, Fall 2010 26

  Dekker’s algorithm for critical sections

Thread 1! Thread 2!

Flag1 = 1;!

if (Flag2 == 0)!
 critical !

Flag2 = 1;!

if (Flag1 == 0)!
 critical !

Flag1 = Flag2 = 0;!

Flags1! 0!

Flags2! 1!
Violation !!!!

How do we violate
sequential consistency?

Memory Model COS 597C, Fall 2010 27

Very EASY !

 Lets take a look at several hardware/
compiler optimizations that are

commonly used for uniprocessor

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 28

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

Buffer! Buffer!

Flag1! 0!

Flag2! 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 29

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 30

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

(2)  
Read  
Flag1!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 31

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

(3)
Write
Flag1!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

(2)  
Read  
Flag1!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 32

  Write buffers with bypassing

Thread 1! Thread 2!

Flag1 = 1;!
if (Flag2 ==0)!
 critical !

Flag2 = 1;!
if (Flag1 ==0)!
 critical !

Shared Bus!

T1! T2!

(3)
Write
Flag1!

(4)
Write
Flag2!

Flag1! 0!

Flag2! 0!

(1)  
Read  
Flag2!
= 0!

(2)  
Read  
Flag1!
= 0!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 33

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Flag = a = 0;!

Memory!Flag = 0! a = 0!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 34

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Memory!Flag = 0! a = 0!

(2) read Flag!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 35

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Memory!Flag = 0! a = 0!

(2) read Flag!
(3) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 36

  Overlapping writes

T1! T2!

(1)!
write  
Flag!

Memory!Flag = 0! a = 0!

(4)!
write  
a!

(2) read Flag!
(3) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 37

  Non-blocking reads

T1! T2!

Memory!Flag = 0! a = 0!

(1) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 38

  Non-blocking reads

T1! T2!

Memory!Flag = 0! a = 0!

(2)!
write  
a!

(1) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 39

  Non-blocking reads

T1! T2!

(3)!
write  
Flag!

Memory!Flag = 0! a = 0!

(2)!
write  
a!

(1) read a!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Violation of SC: Architecture without Caches

Memory Model COS 597C, Fall 2010 40

  Non-blocking reads

T1! T2!

(3)!
write  
Flag!

Memory!Flag = 0! A = 0!

(2)!
write  
a!

(1) read a!
(4) read Flag!

Flag = a = 0;!

Thread 1! Thread 2!

a = 26;!

Flag= 1;!

while (Flag == 0)!
 {};!

b = a;!

Architecture with Private Caches

Memory Model COS 597C, Fall 2010 41

To comply with Sequential Consistency, we need:
  Cache coherency protocol

  A write is eventually made visible to all processors
  Writes to the same location appear to be seen in the same

order by all processors (serialization) [Gharachorloo’90]

  Ability to detect the completion of write operations
  Acknowledgement messages
  Invalid or update messages

  The illusion of atomic writes

Write atomicity

Memory Model COS 597C, Fall 2010 42

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

What is the value of R1 and R2 after execution?!

A = B = C = 0;!

Write Atomicity

Memory Model COS 597C, Fall 2010 43

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 1! R2 = 1!

✔

Write Atomicity

Memory Model COS 597C, Fall 2010 44

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 2! R2 = 2!

✔

Write Atomicity

Memory Model COS 597C, Fall 2010 45

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 1! R2 = 2!

✗ Sequential Consistency:
operation from all threads must appear
In some sequential order atomically

Violation !!!!

Compilers Optimization that Violates SC

Memory Model COS 597C, Fall 2010 46

  Compiler reordering must respect data and control
dependencies

  Code motion

Thread 1! Thread 2!

for(i=0;i<10;i++)!
 *a = i;!

while (true)!
 b = *a;!

Load from a cannot be
moved out of the
loop

Compilers Optimization that Violates SC

Memory Model COS 597C, Fall 2010 47

  Compiler reordering must respect data and control
dependencies

  Code motion
  Common sub-expression elimination

Thread 1! Thread 2!

a = 6;!

Flag = 1;!

c = a – 1;!

while (Flag == 0) {};!

b = a - 1;!

(a-1) cannot be  
eliminated for  
assignment of b

Compilers Optimization that Violates SC

Memory Model COS 597C, Fall 2010 48

  Compiler reordering must respect data and control
dependencies

  Code motion
  Common sub-expression elimination
  Register allocation

Thread 1! Thread 2!

a = 6;!

Flag = 1;!

while (Flag == 0) {};!

b = a;!

Flag cannot be
allocated to a
register

Sequential Consistency: Summary

Memory Model COS 597C, Fall 2010 49

  Sequential consistency does not guarantee data race free

  Possible hardware/compiler optimizations allowed
  Hardware/software prefetching
  Speculating read values

  Determining which instructions are allowed to be
reordered remain an open question

Thread 1! Thread 2!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

Data race:
•  two memory access to the same location
•  one is a write
•  they can occur simultaneously

Relaxed Memory Models

Memory Model COS 597C, Fall 2010 50

  Key points
  Program order for different memory addresses
  Write atomicity

  Possible relaxations
  Relaxation on program order (different memory locations)

  Relax write to read program order
  Relax write to write program order
  Relax read to read and read to write program order

  Relaxation on write atomicity
  Read other’s write early
  Read own write early

  Safety nets, such as fence

……
code

fence

code
……

✗ ✗

Major Relaxed Hardware Models

Memory Model COS 597C, Fall 2010 51

Relax W->R W->W R->RW Read others’
write early

Read own
write early Safety Net

SC ✔
IBM 370 ✔ Serial inst

TSO(x86) ✔ ✔ RMW, fence

PC ✔ ✔ ✔ RMW

PSO ✔ ✔ ✔ RMW

WO ✔ ✔ ✔ ✔ synch

RCsc ✔ ✔ ✔ ✔ lock, nsync,
RMW RCpc ✔ ✔ ✔ ✔ ✔

Alpha ✔ ✔ ✔ ✔ MB, WMB

RMO ✔ ✔ ✔ ✔ MEMBAR

PowerPC ✔ ✔ ✔ ✔ ✔ synch

Processor Consistency

Memory Model COS 597C, Fall 2010 52

  Writes done by a single processor are received by other
processors in the same order as they are issued.

  Writes from different processors may be seen in different
order by different processors.

Thread 1! Thread 2! Thread 3! Thread 4!

A = 1;!
B = 1;!

A = 2;!
C = 1;!

while (B!=1) {};!
while (C!=1) {};!
R1 = A;!

while (B!=1) {};!
while (C!=1) {};!
R2 = A;!

A = B = C = 0;!

R1 = 1! R2 = 2!✔

Weak Ordering Model [Dubois’ 86]

Memory Model COS 597C, Fall 2010 53

  Classification of memory operations
  Data operations: load, store…
  Synchronization operations: lock unlock etc

  How does it work ?
  All pre-issued operations must complete on all processors

before executing a synchronization operation
  Execution of synchronization operations must follow program

order
  Memory operations between synchronization operations can

be reordered

Data-Race-Free-0 Model

Memory Model COS 597C, Fall 2010 54

  A program is data-race-free on a particular input if no
sequential consistent execution results in a data race

  A new definition of weak ordering [Adve’90 ISCA]
  Advantage:

  Simple programmability of sequential consistency
  Implementation flexibility of relaxed models

  Sequential consistency for DRF is widely used
  C++ memory model

Relaxed Memory Model: Summary

Memory Model COS 597C, Fall 2010 55

  Relaxed memory model
  Relaxes restrains on the order of some memory operations
  Allows some hardware/compiler optimization

  Why do we use relaxed memory model : performance
  Why do we not use relaxed memory model : complexity

CASE STUDY: The C++ Memory Model
  Adaption of DRF0

  Sequential consistency for race-free programs
  Behavior of a program with data race is undefined (no benign

data races in C++)

  Data operations:
load, store

  Synchronization operations:
lock, unlock, atomic load, atomic store, atomic read-modify-write

  Atomic operations must appear sequentially consistent

[Boehm’s PLDI 2008: Foundations of the C++ Concurrency Memory Model]

Memory Model COS 597C, Fall 2010 56

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 57

  Compiler code reordering allowed when:
For memory operations M1 and M2
  M1 is a data operation and M2 is a read synchronization

operation
  M1 is write synchronization and M2 is data
  M1 and M2 are both data with no synchronization sequence-

ordered between them.
  M1 is data and M2 is the write of a lock operation
  M1 is unlock and M2 is either a read or write of a lock.

  Hardware optimization allowed for non-atomic writes

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 58

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

Can the program assert?!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 59

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

Can the program assert?!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 60

  Semantic of trylock

Yes, if the compiler reorders  
code in T1!

Thread 1! Thread 2!

lock(l); !

X = 42;!

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 61

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

We can use a fence, but it is  
unfair for properly used trylock!

CASE STUDY: The C++ Memory Model

Memory Model COS 597C, Fall 2010 62

  Semantic of trylock

Thread 1! Thread 2!

X = 42;!

lock(l); !

while (trylock(l) == success) !
 unlock(l);!
assert(X==42);!

Solution: in C++ memory model, trylock does not !
guarantee to reveal anything about the state  
of the lock!

CASE STUDY: The JAVA Memory Model
  JAVA: the first language specification attempts to

incorporate memory model
  What JAVA should do?

  Define semantics of all programs
  Support execution of untrusted “sandboxed” code

  Sequential consistency for DRF
  Synchronization implemented using monitors

  Volatile
  synchronized primitive

  JAVA memory model does not guarantee deadlock free

Memory Model COS 597C, Fall 2010 63

CASE STUDY: The JAVA Memory Model

Memory Model COS 597C, Fall 2010 64

  JAVE bugs found
historically
  Detached thread
  Double-checked locking

Helper helper;!

Helper getHelper() {!

!if (helper==null) {!

! synchronized(this) {!

! !if (help==null)!

! ! helper=new Helper();!

! } !

!}!

 return helper;!

}!

Lessons Learnt from C++/JAVA

Memory Model COS 597C, Fall 2010 65

  SC for DRF is the minimal baseline
  Specifying semantics for programs with data races is

extremely HARD
  Simple optimization may introduce unintended

consequences
  State-of-the-art is still broken

  Abandon shared memory?
  Hardware co-designed with high-level memory models?
  Any volunteer for fixing the whole thing?

Conclusion

Memory Model COS 597C, Fall 2010 66

  Memory model is very important and confusing
  Memory model specifies what hardware/compiler can do

and cannot do
  Sequential consistency is very intuitive yet prohibits

performance
  Relaxed memory models allows some optimization but

introduces programming complexity
  Don’t try to be clever, unless you are clever enough

Advanced Topics

Memory Model COS 597C, Fall 2010 67

  Why threads cannot be implemented as a library
  Ongoing projects:

  Deterministic Parallel JAVA (DPJ)
  Functional languages
  DeNoVo hardware project

Pthreads

Memory Model COS 597C, Fall 2010 68

  Some open source pthread implementation

References

Memory Model COS 597C, Fall 2010 69

  Boehm’s “Foundations of the C++ Concurrency Memory
Model”

  Pugh’s “Fixing the JAVA Memory Model”
  Adve’s “Shared Memory Consistency Models: A Tutorial”
  Dubois’ “Memory Access Buffering in Multiprocessors”
  Bohem’s “Threads cannot be implemented as a library”

