
Thread 1 Thread 2
atomic {
r1 = x; x = 1;
r2 = x;
}

Can r1!=r2?
(a) Non-repeatable reads

Initially x==0
Thread 1 Thread 2
atomic {
r = x; x = 10;
x = r + 1;
}

Can x==1?
(b) Lost updates

Initially x is even
Thread 1 Thread 2
atomic {
x++; r = x;
x++;
}

Can r be odd?
(c) Dirty reads

Figure 2. Isolation violations expected with data races.

Intermediate dirty reads: Figure 2(c) illustrates an intermediate
dirty read (IDR) where a non-transactional access can observe
the intermediate state of a transaction. Thread 1 maintains the
invariant that x is even, but Thread 2 will observe an odd value if it
reads x between Thread 1’s two increments. Under lazy versioning,
intermediate dirty reads cannot occur, but at the cost of ordering
violations discussed in Section 2.3.

2.2 Eager-versioning anomalies
Eager-versioning STM can exhibit dirty read and lost update behav-
iors that are not otherwise possible in lock-based code. These be-
haviors are due to the speculate-and-undo strategy of eager version-
ing, in which a transaction speculatively updates shared memory in
place and then on abort, rolls back these updates with a compensat-
ing write. A rolled-back transaction thus manufactures new shared
memory writes that are not present in any sequentially-consistent
execution, resulting in new lost update and dirty read scenarios.

Speculative lost updates: Figure 3(a) illustrates a speculative lost
update (SLU) where a non-transactional update is lost due to a
write during transaction rollback. Assume Thread 1 updates x first,
and then Thread 2 updates y and x. If Thread 1 now rolls back, it
will restore x’s value back to 0 and skip over the update to x on
re-execution (because it now observes y==1), resulting in x==0.

Speculative dirty reads: Figure 3(b) illustrates a speculative dirty
read (SDR) where a non-transactional read observes the speculative
state of a transaction. Assume Thread 1 updates x first, and then
Thread 2 updates y after observing x==1. If Thread 1 now rolls
back, it will restore x’s value back to zero and skip over the update
to x on re-execution, resulting in x==0.

2.3 Lazy-versioning anomalies
Lazy-versioning STM can exhibit memory ordering problems sim-
ilar to memory consistency problems in shared-memory multi-
processors [2]. Lazy-versioning STM buffers transactional updates
privately and then writes the buffered updates back to shared mem-
ory “lazily” when the transaction commits. The window of time
between the transaction commit and the update to shared memory
can cause memory ordering violations because non-transactional
code does not see all committed values during that time.

Memory inconsistency: Figure 4 illustrates memory inconsis-
tency (MI) due to violation of established ordering rules. In Figure
4(a), Thread 1 initializes a field in the object el and then publishes
the object by writing it to a volatile shared variable x. Thread 2 may
now see the published object in x but not see the initialized value of
its field because a lazy-versioning STM copies buffered values to
memory one at a time in no particular order. Since x is volatile, this
ordering is inconsistent [38]. The same problem can occur when a
final field is initialized inside a transaction but is reordered with a
publishing write. This is similar to the multiple overlapped writes
problem described in [2].

Figure 4(b) shows another memory inconsistency example dis-
tilled from Figure 1. Thread 1 takes a shared value in x and makes

it thread local. Once x is set to null, the object in r1 is not visible
to other threads, and from the programmers point of view, it should
be safe to access x outside an atomic region. In a lazy-versioning
STM, Thread 2 may buffer an update to x.val, validate itself, and
commit. But before it has flushed the new value to memory, Thread
1 may execute its transaction and start accessing r1.val. Logi-
cally, Thread 2’s transaction executes before Thread 1’s transaction,
and Thread 1’s accesses to r1.val execute after Thread 1’s trans-
action. But because the STM updates shared memory lazily, Thread
1’s accesses to r1.val end up racing with the STM’s update. This
is similar to the buffered writes problem described in [2].

2.4 Anomalies due to coarse-grained versioning
When the granularity at which the STM system manages data
versions is greater than the granularity at which non-transactional
code writes data (e.g., if the STM logs or buffers writes in 8-byte
blocks while a non-transactional access writes a 4-byte value within
that block), then additional problems can occur in both lazy- and
eager-versioning STM systems.

Granular lost updates: Figure 5(a) illustrates a granular lost
update (GLU) where the non-transactional update to x.g is lost
even though the transaction never accesses this field and there is
no data race. Eager-versioning STM systems [27, 1] maintain undo
log entries that may be larger than individual object fields (or array
elements). If Thread 1’s transaction creates an undo log entry that
spans fields f and g of x, Thread 2’s update to x.g could be lost if
Thread 1 aborts and rolls back x.f. A similar problem can happen
in lazy-versioning STM’s that buffer values at a similar granularity;
for example, if Thread 2 updates x.g after Thread 1 has created a
private copy that spans fields f and g, then the update will vanish
after Thread 1 commits and writes back its copy to shared memory.

Granular lost updates arise because the STM manufactures new
writes to variables that lie adjacent to a variable updated inside a
transaction. These writes do not exist in any sequentially-consistent
execution of the program. Granular lost updates are similar to the
problem of rewriting adjacent data described by Boehm [10].

Granular inconsistent reads: Figure 5(b) illustrates a granular
inconsistent read (GIR) where a transaction may see inconsis-
tent updates from a non-transactional thread. Granular inconsistent
reads are similar to granular lost updates but may only occur in
lazy versioning STMs. Here, the shared variable y is volatile and
imposes certain ordering constraints between Thread 1 and Thread
2. In particular, if Thread 1 observes Thread 2’s update to y, it
must also observe Thread 2’s update to x.g. In a lazy-versioning
STM, however, Thread 1’s transaction (as in the earlier GLU ex-
ample) may have created a private copy on the write to field x.f
that also spans x.g. In this case, the transaction will later read its
own stale copy of x.g and not observe Thread 2’s update as re-
quired by the Java memory model. Note that a granular inconsistent
read is a memory inconsistency anomaly akin to those described in
Section 2.3.


