
(0x108, 93)

(0x100, 24)

(0x148, 8)

6

68

19

tdid: 1
ver/status: 35/COMMITTED

ReadSet
orecIdx orecSnapshot

3

6

WriteSet

(0x120, 2)

(7,53,R,1)

(5,27,R,1)

TRANS

ver/status: 27/ACTIVE

ReadSet

3

WriteSet

orecIdx orecSnapshot

0x100

0x108

0x110

0x118

0x120

0x128

0x130

0x138

0x140

0x148

0x150

0x158

ADDRESS SPACE

tdid: 0

(7,53,R,2)

rdcnt

0:

1:

2:

3:

4:

5:

6:

7:

tdid

0

0

7

1

5

OREC TABLE

ver mode

27

27

53

35

27 R

W

R

W

W -

-

2

1

-

Figure 1. Key data structures for STM component of HyTM.

3.2 HyTM data structures

As in most STMs, software transactions acquire “ownership” for
each location they intend to modify. Transactions also acquire “read
ownership” for locations that they read but do not modify, but this
kind of ownership need not be exclusive. There are two key data
structures in our prototype: the transaction descriptor and the own-
ership record (orec). Our prototype maintains a transaction descrip-
tor for each thread that may execute a transaction, and a table of

orecs.2 Each location in memory maps to an orec in this table. To
keep the orec table a reasonable size, multiple locations map to the
same orec. These data structures are illustrated in Figure 1.
A transaction descriptor includes a transaction descriptor iden-

tifier tdid, a transaction header, a read set and a write set. The
transaction header is a single 64-bit word containing a version
number and a status (which may be FREE, ACTIVE, ABORTED,
or COMMITTED). The version number distinguishes different (soft-
ware) transactions by the same thread: a transaction is uniquely
identified by its descriptor’s identifier and its version number. The
read set contains a snapshot of each orec corresponding to a loca-
tion the transaction has read but not written. The write set contains
an entry for each location that the transaction intends to modify,
storing the address of the location and the most recent value writ-
ten to that location by the transaction.

2 Independently, Harris and Fraser also developed an STM that uses a table
of ownership records [8]. Their approach bears some similarity to ours, but
the details are quite different. In particular, as far as we know, transactions
executed in hardware cannot interoperate correctly with their STM.

An orec is a 64-bit word with tdid, ver, mode and rdcnt fields.
To avoid interference, orecs and transaction headers are modified
using a 64-bit compare-and-swap instruction. The tdid and ver
fields indicate the transaction that most recently acquired the orec
in WRITE mode. The mode field may be UNOWNED, READ, or WRITE,
indicating whether the orec is owned, and if so, in what mode. If the
orec is owned in READ mode, the rdcnt field indicates how many
transactions are reading locations that map to this orec. This form
of read ownership is “semi-visible”: a transaction can determine
whether any transactions are reading locations that map to this
orec—and if so, how many—but it cannot identify the specific
transactions doing so.

3.3 Implementing software transactions

A transaction executed using our HyTM library begins with empty
read and write sets and its status set to ACTIVE. It then executes
user code, making calls to our STM library for each memory
access. Before writing a location, the transaction acquires exclusive
ownership in WRITE mode of the orec for that location, and creates
an entry in its write set to record the new value written to the
location. To acquire an orec in WRITE mode, the transaction stores
its descriptor identifier and version number in the orec. Subsequent
writes to that location find the entry in the write set, and overwrite
the value in that entry with the new value to be written.
Similarly, before reading a location, a transaction acquires own-

ership of the orec for that location, this time in READ mode. If the
orec is already owned in READ mode by some other transaction(s),
this transaction can acquire ownership simply by incrementing the
rdcnt field (keeping all other fields the same). Otherwise, the
transaction acquires the orec in READ mode, by setting the mode
field to READ and the rdcnt field to 1. In either case, the transac-
tion records in its read set the index of the orec in the orec table and
a snapshot of the orec’s contents at that time.
After every read operation, a transaction validates its read set to

ensure that the value read is consistent with values previously read
by the transaction. (This simple approach is much more conserva-
tive than necessary, so there is significant opportunity for improv-
ing performance here.) Validating its read set entails determining
that none of the locations it read have since changed. This can be
achieved by iterating over the read set, comparing each orec owned
in READ mode to the snapshot recorded previously, ensuring it has
not changed (except possibly for the rdcnt field). We discuss a
way to significantly reduce this overhead in many cases below.
When a transaction completes, it attempts to commit: It val-

idates its read set and, if this succeeds, attempts to atomically
change its status from ACTIVE to COMMITTED. If this succeeds, then
the transaction commits successfully. The transaction subsequently
copies the values in its write set back to the appropriate memory
locations, before releasing ownership of those locations.
The commit point of the transaction is at the beginning of

the read validation. The subsequent validation of the reads and
the fact that the transaction maintains exclusive ownership of the
locations it writes throughout the successful commit implies that
the transaction can be viewed as taking effect atomically at this
point, even though the values in the write set may not yet have
been copied back to the appropriate locations in memory: other
transactions are prevented from observing “out of date” values
before the copying is performed.
Figure 1 illustrates a state of a HyTM system in which there are

8 orecs and two executing transactions: an active transaction T0,
using transaction descriptor 0 with version number 27; and a com-
mitted transaction T1, using transaction descriptor 1 with version
number 35. T0 has read 6 from address 0x158 (and therefore has a
snapshot of orec 3), and has written 93 to 0x108, 8 to 0x148, and
24 to 0x100 (with corresponding entries in its write set). T1 has


