
required, Figs. 6 and 7 show the size of the buffers needed to hold 

the state read or written by 10%, 50%, and 90% of each applica-

tion’s transactions, sorted by the size of the 90% limit.  Virtually 

all applications have a few very large transactions that will defi-

nitely cause overflow, but hardware should have enough room to 

avoid overflow on most transactions in order to keep the number 

of early commit permission claims to a minimum.   90% or better 

is a good initial target, but even fewer overflows may be neces-

sary for good performance on systems with many processors.

State size is mostly dependent upon the sizes of “natural” trans-

actional code regions, such as loop bodies, that are available for 

exploitation within an application.  As such, it is very application 

dependent, but generally quite reasonable.  With the exception of 

mtrt and SPECjbb, all of our benchmarks worked fine within 

about 6-12 KB of read state — well within the size of even the 

smallest caches today — and about 4-8 KB of write state.  The 

buffer-hungry applications generally still had low 10% and 50% 

breakpoints, so even those would probably work reasonably well 

with small buffers, although noticeable serialization from buffer 

overflow would undoubtedly occur.  While our various versions 

of radix did not vary much in terms of speedup, they varied dra-

matically in the size of their read and write state.  Our radix_l and 

radix_xl (not plotted, because it was so large) variations required 

very large amounts of state with each transaction.  However, it 

was relatively easy to scale these down to smaller transactions 

with little impact on the system performance.  Based on our ex-

amination of the code, many dense-matrix applications such as 

swim and tomcatv should have similar properties.  Any of these 

“transaction size tolerant” applications would also be excellent 

targets for use with hardware commit control, as described in 

Section 4.2, which could help the programmer size transaction 

regions optimally for the available buffer sizes.  This would be es-

pecially helpful if widely varying datasets may be used, as trans-

actions that entirely contain inner loops may vary in size along 

with the dataset.

2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2

0

0.2

0.4

0.6

0.8

1

P
ro

c
e

s
s
o

r 
A

c
ti
v
it
y

Used

Waiting

Violating

Idle

2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2 2 4 8

1
6

3
2

0

0.2

0.4

0.6

0.8

1

P
ro

c
e

s
s
o

r 
A

c
ti
v
it
y

art equake_l equake_s lu radix swim tomcatv water

euler fft jbyte_B5 jbyte_B6 jbyte_B8 jbyte_B9 moldyn mtrt raytrace shallow

SPECjbb

Figure 5: Distribution of execution time on the perfect TCC system’s processors between useful work, violated time (failed 

transactions), waiting time (load imbalance in parallel code), and idle time (time waiting during sequential code).

Figure 6: State read by individual transactions with store 

buffer granularity of 64-byte cache lines.  We show state 

required by the smallest 10%, 50%, and 90% of iterations.

Figure 7: Same as Fig. 6, but for write state.

m
o

ld
y
n

e
q

u
a

k
e

_
s

jb
y
te

_
B

6

ra
y
tr

a
c
e

jb
y
te

_
B

8

ra
d

ix
-x

s
-8

P

s
h

a
llo

w ff
t

e
u

le
r

w
a

te
r-

8
P

ra
d

ix
-s

-8
P

e
q

u
a

k
e

_
l

ra
d

ix
-m

-8
P

lu
-8

P

to
m

c
a

tv

s
w

im

jb
y
te

_
B

5

jb
y
te

_
B

9

a
rt

0

1

2

3

4

5

6

7

8
R

e
a
d
 S

ta
te

 i
n
 K

B
 (

w
it
h
 6

4
B

 l
in

e
s
)

Applications

10%

50%

90%

ra
d

ix
-l
-8

P

m
tr

t

S
P

E
C

jb
b

0

5

10

15

20

25

30

35

40

45

50

m
o
ld

y
n

e
q
u
a
k
e
_
s

e
u
le

r

jb
y
te

_
B

9

ra
y
tr

a
c
e

jb
y
te

_
B

5

jb
y
te

_
B

6

s
h
a
llo

w

e
q
u
a
k
e
_
l

jb
y
te

_
B

8

a
rt

w
a
te

r-
8
P ff
t

s
w

im

m
tr

t

to
m

c
a
tv

lu
-8

P

ra
d
ix

-m
-8

P

ra
d
ix

-x
s
-8

P

ra
d
ix

-s
-8

P

0

1

2

3

4

5

6

7

W
ri
te

 S
ta

te
 i
n
 K

B
 (

w
it
h
 6

4
B

 l
in

e
s
)

Applications

10%

50%

90%

S
P

E
C

jb
b
-8

P

ra
d
ix

-l
-8

P

0

5

10

15

20

25

30

35

40

45

50


