
 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 3 4 6 8 12 16 24 32 48

O
p
e
ra

ti
o
n
s
 p

e
r

s
e
c
o
n
d

Number of threads

transactified (255 readers)
transactified (15 readers)
original

 0

 500000

1000000

1500000

2000000

2500000

3000000

3500000

 1 2 3 4 6 8 12 16 24 28 32 36 40 44 48

C
o
m

p
le

ti
o
n
 t
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Number of threads

 0

 100000

 200000

 300000

 400000

 500000

 600000

 1 2 3 4 6 8 12 16 24 32 48

C
o
m

p
le

ti
o
n
 t
im

e
 (

m
ic

ro
s
e
c
o
n
d
s
)

Number of threads

(a) (b) (c)

Figure 2. Software-only experiments: (a) Berkeley DB lock subsystem (b) barnes (c) raytrace

per iteration. We were not surprised by the higher overhead (see
Section 4.5), but we were disappointed by the lack of scalability.
A quick investigation revealed that scalability was prevented

by false sharing, which occurs when variables accessed by dif-
ferent threads happen to fall in the same cache line, and by two
sources of “real” conflict. False sharing can be especially bad in a
transactional context because it can introduce unnecessary aborts
and retries, which can be much more expensive than the unnec-
essary cache misses it causes in lock-based programs. Moore et
al. [22] make a similar observation from their experience. It is stan-
dard practice to “pad” variables in high-performance concurrent
programs to avoid the profound impact false sharing can have on
performance. We found that this significantly improved the perfor-
mance and scalability of the transactified version. (Applying these
techniques to the original implementation did not improve its scal-
ability, because of the serialization due to the global lock.)
In addition to the conflicts due to false sharing, we found two

significant sources of “real” conflicts. First, the Berkeley DB lock
subsystem records various statistics in shared variables protected
by the global lock. As a result, each pair of transactions conflicted
on the statistics variables, eliminating any hope of scalability. It
is standard practice to collect such statistics on a per-thread basis
and to aggregate them afterwards. However, we simply turned
off the statistics gathering (in the original code as well as in the
transactified version).
Second, Berkeley DB maintains a data structure for each object

being locked, and a “lock descriptor” for each lock it grants. Rather
than allocate and free these dynamically, it maintains a pool for
each kind of data structure. We discovered many conflicts on these
pools because each pool is implemented as a single linked list,
resulting in many conflicts at the head of the list. We reduced
contention on these pools using standard techniques: Instead of
keeping a single list for all the lock descriptors, we distributed the
pool into multiple lists, and had threads choose a list by hashing on
their thread id. On initialization, we distribute the same number of
lock descriptors as in the original single-list pool over the several
lists implementing the pool in the revised implementation. We also
implemented a simple load-balancing scheme in which, if a thread
finds its list empty when attempting to allocate a descriptor, it
“steals” some elements from another list. Programming this load
balancer was remarkably easy using transactions.
Figure 2(a) compares the original Berkeley DB (with statistics

disabled) to two configurations of the transactified version after
the modifications described above. For this and other microbench-
marks, we report throughput as operations per second (in this case,

a thread acquiring and releasing its lock is one operation); for the
SPLASH-2 benchmarks presented later, we report completion time.
When only one thread participated, the transactified version

performed roughly a factor of 20 worse than the lock-based version.
This is not surprising, as we have thus far avoided a number of
optimizations that we expect to considerably reduce overhead of
our HyTM implementation, and because with a single thread, the
disadvantages of the coarse-grained locking solution are irrelevant.
As the number of threads increases, however, the throughput of the
original implementation degrades dramatically, as expected with
a single lock. In contrast, the transactified version achieves good
scalability at least up to 16 threads. For four or more threads, the
transactified version beats the lock-based version, despite the high
overhead of our unoptimized implementation.
Initially, the rdcnt fields in our library had four bits, allowing

up to 15 concurrent readers per orec. With this configuration, the
transactified version did not scale past 16 threads. A short investi-
gation revealed that the rdcnt field on some orecs was saturating,
causing some readers to wait until others completed. We increased
the number of bits to 8, allowing up to 255 concurrent readers per
orec. As Figure 2(a) shows, this allowed the transactified version
to scale well up to 32 threads. The decrease in throughput at 48
threads is due to a coincidental hash collision in the Berkeley DB
library; changing the hash function eliminated the effect, so this
does not indicate a lack of scalability in our HyTM prototype.

4.3 SPLASH-2 benchmarks

We took three SPLASH-2 [33] benchmarks—barnes, radiosity,
and raytrace—as transactified by Moore et al. [22], converted
them to use our HyTM prototype, and compared the transactified
benchmarks to the original, lock-based implementations.
In the original lock-based versions, barnes (Figure 2(b)) scaled

well up to 48 threads; radiosity (not shown) scaled reasonably to
16 threads and thereafter failed to improve performance and even
took longer with more threads above 32 threads; and raytrace
(Figure 2(c)) scaled well only to 6 threads, after which adding
threads only hurt performance.
In each case, the transactified version took about 30% longer

than the lock-based version with one thread. For barnes, the trans-
actified version tracked the original version up to about 24 threads,
albeit with noticeable overhead relative to the original version. At
higher levels of concurrency, performance degraded significantly.
This is because the number of conflicts between transactions in-
creased with more threads participating. We expect to be able to im-
prove performance in this case through improved contention man-

