
 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

STLVector Test: initsiz=100, ctr-range=40

htm.oneLock
noTM.oneLock

htm.rwLock
noTM.rwLock

 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
er

at
io

ns
/u

s)

threads

TLE with Hashtable in Java

0:10:0-locks
0:10:0-TLE
1:8:1-locks
1:8:1-TLE

2:6:2-locks
2:6:2-TLE

4:2:4-locks
4:2:4-TLE

(a) (b)

Figure 3. (a) TLE in C++ with STL vector (b) TLE in Java with Hashtable.

for Hashtable are shown in Figure 3; a curve labeled with
2-6-2 indicates 20% puts, 60% gets, and 20% removes.

With 100% get operations, TLE is highly successful,
and the throughput achieved scales well with the number
of threads. As we increase the proportion of operations that
modify the Hashtable, more transactions fail, the lock is
acquired more often, contention increases, and performance
diminishes. Nonetheless, even when only 20% of the opera-
tions are gets, TLE outperforms the lock everywhere except
the single threaded case. We hope to improve performance
under contention, for example by adaptively throttling con-
currency when contention arises.

We also conducted similar experiments for HashMap. As
before (5), we found that HashMap performed similarly to
Hashtable in the read-only test. When we introduced op-
erations that modify the collection, however, while we still
achieve some performance improvement over the lock, so far
our results are not as good as for Hashtable. We have made
some interesting observations in this regard.

We observed good performance with HashMap compara-
ble to Hashtable, but noticed that later in the same experi-
ment, performance degraded and became comparable to the
original lock. After some investigation, we determined that
the difference was caused by the JIT compiler changing its
decision about how to inline code. At first, it would inline the
synchronized collection wrapper together with each of the
HashMap’s put, get and remove methods. Thus, when the
JVM converted the synchronized methods to transactions,
the code to be executed was all in the same method.

Later, however, the JIT compiler revisited this decision,
and in the case of put, instead inlined the synchronized col-
lection wrapper into the worker loop body and then emit-
ted a call to a method that implements HashMap.put().
As a result, when the TLE-enabled JVM converts the syn-
chronized method to a transaction, the transaction contains
a function call, which—as discussed in Section 3—can of-
ten abort transactions in Rock. If the compiler were aware

of TLE, it could avoid making such decisions that are detri-
mental to transaction success.

We also tested TreeMap from java.util.concurrent,
another red-black tree implementation. Again, we achieved
good results with small trees and read-only operations, but
performance degraded with larger trees and/or more muta-
tion. We have not investigated in detail.

We are of course also interested in exploiting Rock’s
HTM in more realistic applications than the microbench-
marks discussed so far. As a first step, we have experimented
with the VolanoMarkTM benchmark (18). With the code for
TLE emitted, but with the feature disabled, we observed
a 3% slowdown, presumably due to increased register and
cache pressure because of the code bloat introduced. When
we enabled TLE, it did not slow down the benchmark fur-
ther, as we had expected, and in fact it regained most of the
lost ground, suggesting that it was successful in at least some
cases. However, a similar test with an internal benchmark
yielded a 20% slowdown, more in line with our expectation
that blindly attempting TLE for every contended critical sec-
tion would severely impact performance in many cases.

This experience reinforces our belief that TLE must be
applied selectively to be useful in general. We are working
towards being able to do so. As part of this work we have
built a JVM variant that includes additional synchronization
observability and diagnostic infrastructure, with the purpose
of exploring an application and characterizing its potential
to profit from TLE and understanding which critical sections
are amenable to TLE, and the predominant reasons in cases
that are not. We hope to report in more detail on our experi-
ence with the tool soon.

8. Minimum Spanning Forest algorithm
Kang and Bader (10) present an algorithm that uses trans-
actions to build a Minimum Spanning Forest (MSF) in par-
allel given an input graph. Their results using an STM for
the transactions showed good scalability, but the overhead

165

