
 0.1

 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

RedBlackTree: 100% reads, keyrange=[0,128)

 0.1

 1

 10

 100

 1 2 3 4 6 8 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

RedBlackTree: 96% reads, keyrange=[0,2048)

phtm
phtm-tl2

hytm
stm

stm-tl2
one-lock

(a) (b)

Figure 2. Red-Black Tree. (a) 128 keys, 100% reads (b) 2048 keys, 96% reads, 2% inserts, 2% deletes.

deciding when to stop attempting hardware transactions, but
in extreme cases this is easy.

Before giving up on getting any benefit from HTM in
such cases, however, we want to understand the behavior
better, and explore whether better retry heuristics can help.

As discussed earlier, understanding the reasons for trans-
action failure can be somewhat challenging. Although the
mentioned CPS improvements have alleviated this problem
to some extent, it is still possible for different failure reasons
to set the same CPS values. Therefore, we are motivated to
think about different ways of analyzing and inferring rea-
sons for failures. Below we discuss an initial approach we
have taken to understanding our red-black tree data.

6.1 Analyzing Transacation Failures

Significant insight into the reason for a transacation failing
can be gained if we know what addresses are read and writ-
ten by it. We added a mechanism to the PhTM library that
allows the user to register a call-back function to be called
at the point that a software transaction attempts to commit;
furthermore, we configured the library to switch to a soft-
ware phase in which only the switching thread attempts a
software transaction. This gives us the ability to examine the
software transaction executed by a thread that has just failed
to execute the same operation as a hardware transaction.

We used this mechanism to collect the following infor-
mation about operations that failed to complete using hard-
ware transactions: Operation name (Get, Insert or Delete);
read set size (number of cache lines1); maximum number
of cache lines mapping to a single L1 cache set; write set
size (number of cache lines and number of words); number
of words in the write set that map to each bank of the store
queue; number of write upgrades (cache lines that were read
and then written); and number of stack writes.

1 In practice, we collected the number of ownership-records covering the
read-set. Since each cache-line maps to exactly one ownership-record, and
since the size of our ownership-table is very large, we believe that the two
are essentially the same.

We profiled single threaded PhTM runs with various tree
sizes and operation distributions. Furthermore, because the
sequence of operations is deterministic (we fixed the seed
for the pseudo random number generator used to choose op-
erations), we could also profile all operations using an STM-
only run, and use the results of the PhTM runs to eliminate
the ones that failed in hardware. This way, we can compare
characteristics of transactions that succeed in hardware to
those that don’t, and look for interesting differences that may
give clues about reasons for transaction failures.

Results of Analysis In addition to the experiments de-
scribed above, we also tried experiments with larger trees
(by increasing the key range), and found that many opera-
tions fail to complete using hardware transactions, even for
single threaded runs with 100% lookup operations. This does
not seem too surprising: the transactions read more locations
walking down a deeper tree, and thus have a higher chance
of failing to fit in the L1 cache.

We used the above-described tools to explore in more
depth, and we were surprised to find out that the problem
was not overflowing of L1 cache sets, nor exceeding the
store queue limitation. Even for a 24, 000 element tree, none
of the failed operations had a read-set that overflowed any
of the L1 cache sets (in fact, it was rare to see more than 2
loads hit the same 4-way cache set). Furthermore, none of
the transactions exceeded the store queue limitation. Putting
this information together with the CPS values of the failed
transactions, we concluded that most failures were because
too many instructions were deferred due to the high num-
ber of cache misses. Indeed, when we then increased the
number of times we attempt a hardware transaction before
switching to software, we found that we could significantly
decrease the number of such failing transactions, because the
additional retries served to bring needed data into the cache,
thereby reducing the need to defer instructions.

Even though we were able to get the hardware transac-
tions to commit by retrying more times, the additional re-

163

