
 0.1

 1

 10

 100

 1 2 3 4 5 6 8 10 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

HashTable Test: keyrange=256, 0% lookups

phtm
phtm-tl2

hytm
stm

stm-tl2
one-lock

 0.1

 1

 10

 100

 1 2 3 4 5 6 8 10 12 16

T
hr

ou
gh

pu
t (

op
s/

us
ec

)

Threads

HashTable Test: keyrange=128000, 0% lookups

phtm
phtm-tl2

hytm
stm

stm-tl2
one-lock

(a) (b)

Figure 1. HashTable with 50% inserts, 50% deletes: (a) key range 256 (b) key range 128,000.

even for the single thread case (these retries explain why
the single lock outperforms HyTM and PhTM somewhat
in the single threaded case). In contrast, with the 256 key
range experiment (scenario (a)), only 0.02% of hardware
transactions are retries in the single thread case, and even
at 16 threads only 16% are retries.

Furthermore, the distribution of CPS values from failed
transactions in the 16 thread, 256 key range case is dom-
inated by COH while in the 128,000 key range case it is
dominated by ST and CTI. This makes sense because there
is more contention in the smaller key range case (resulting
in the CPS register being set to COH), and worse locality in
the larger one. Poor locality can cause transactions to fail for
a variety of reasons, including micro-DTLB mappings that
need to be reestablished (resulting in ST), and mispredicted
branches (resulting in CTI).

Finally, this experiment and the Red-Black Tree experi-
ment (see Section 6) highlighted the possibility of the code
in the fail-retry path interfering with subsequent retry at-
tempts. Issues with cache displacement, TLB displacement
and even modifications to branch-predictor state can arise,
wherein code in the fail-retry path interferes with subsequent
retries, sometimes repeatedly. Transaction failures caused by
these issues can be very difficult to diagnose, especially be-
cause adding code to record and analyze failure reasons can
change the behavior of the subsequent retries, resulting in a
severe probe effect. As discussed further in (6), the logic for
deciding whether to retry in hardware or fail to software was
heavily influenced by these issues, and we hope to improve
it further after understanding some remaining issues we have
not had time to resolve yet.

6. Red-Black Tree
Next, we report on experiments similar to those in the pre-
vious seciton, but using a red-black tree, which is consider-
ably more challenging than a simple hash table for several
reasons. First, transactions are longer and access more data,

and have more data dependencies. Second, when a red-black
tree becomes unbalanced, new insertion operations perform
“rotations” to rebalance it, and such rotations can occasion-
ally propagate all the way to the root, resulting in longer
transactions that perform more stores. Third, mispredicted
branches are much more likely when traversing a tree.

We used an iterative version of the red-black tree (5), so
as to avoid recursive function calls, which are likely to cause
transactions to fail in Rock. We experimented with various
key ranges, and various mixes of operations. In each experi-
ment, we prepopulate the tree to contain about half the keys
in the specified key range, and then measure the time re-
quired for all threads to perform 1,000,000 operations each
on the tree, according to the specified operation distribution;
we report results as throughput in total operations per mi-
crosecond. Figure 2(a) shows results for the “easy” case of
a small tree (128 keys) and 100% lookup operations. Fig-
ure 2(b) shows a more challenging case with a larger tree
(2048 keys), with 96% lookups, 2% inserts and 2% deletes.

The 100% lookup experiment on the small tree yields
excellent results, similar to those shown in the previous
section. For example, at 16 threads, PhTM outperforms the
single lock by a factor of more than 50. However, as we
go to larger trees and/or introduce even a small fraction of
operations that modify the tree, our results are significantly
less encouraging , as exemplified by the experiment shown in
Figure 2(b). While PhTM continues to outperform the single
lock in almost every case, in many cases it performs worse
than the TL2 STM system (7). A key design principle for
PhTM was to be able to compete with the best STM systems
in cases in which we are not able to effectively exploit HTM
transactions. Although we have not yet done it, it is trivial to
make PhTM stop attempting to use hardware transactions,
so in principle we should be able to get the benefit of the
hardware transactions when there is a benefit, suffering only
a negligible overhead when there is not. The challenge is in

162

