
read 6 from 0x158 and 68 from 0x130 (and therefore has snapshots
of orecs 3 and 6), and has written 2 to 0x120. Because T1 has al-
ready committed, its writes are considered to have already taken
effect. Thus, the logical value of location 0x120 is 2, even though
T1 has not yet copied its write set back (so 0x120 still contains the
pre-transaction value of 19). Note that although T1 is the only ex-
ecuting transaction that has read a location corresponding to orec
6, the transaction descriptor identifier for orec 6 is 5, not 1, be-
cause that was the descriptor identifier of the transaction that most
recently acquired write ownership of that orec.

Resolving conflicts If a transaction T0 requires ownership of a
location that is already owned in WRITE mode by another transac-
tion T1, and T1’s status is ABORTED, then T1 cannot successfully
commit, so it is safe for T0 to “steal” ownership of the location
from T1. If T1 is ACTIVE, this is not safe, as the atomicity of T1’s
transaction would be jeopardized if it lost ownership of the loca-
tion and then committed successfully. In this case, T0 can choose
to abort T1 (by changing T1’s status from ACTIVE to ABORTED),
thereby making it safe to steal ownership of the location. Alterna-
tively, it may be preferable for T0 to simply wait a while, giving
T1 a chance to complete. Such decisions are made by a separate
contention manager, discussed below.
If T1’s status is COMMITTED, however, it is not safe to steal

the orec (because T1 may not have finished copying back its new
values). In this case, in our prototype, T0 simply waits for T1 to
release ownership of the location.
If T0 needs to write a location whose orec is in READmode, then

T0 can simply acquire the orec in WRITE mode; this will cause the
read validation of any other active transactions that have read loca-
tions associated with this orec to fail, so there is no risk of violating
their atomicity. Again, the transaction consults its contention man-
ager before stealing the orec: it may be preferable to wait briefly,
allowing reading transactions to complete.

Read after write If a transaction already has write ownership of
an orec it requires for a read, it searches its write set to see if it
has already stored to the location being read. If not, the value is
read directly from memory and no entry is added to the read set,
because the logical value of this location can change only if another
transaction acquires write ownership of the orec, which it will do
only after aborting the owning transaction. Thus, validation of this
read is unnecessary.

Write after read If a transaction writes to a location that maps
to an orec that it owns in READ mode, then the transaction uses
the snapshot previously recorded for this orec to “upgrade” its
ownership to WRITE mode, while ensuring that it is not owned in
WRITE mode by any other transaction, and thus that locations that
map to this orec are not modified, in the meantime. After successful
upgrading, the entry in the read set is discarded, as the orec is no
longer owned in READ mode.

Fast read validation Our prototype includes an optimization, due
to Lev and Moir [13], that avoids iterating over a transaction’s read
set in order to validate it. The idea is to maintain a counter of
the number of times an orec owned in READ mode is stolen by a
transaction that acquires it in WRITE mode. If this counter has not
changed since the last validation, then the transaction can conclude
that all snapshots in its read set are still valid, so it does not need to
check them individually. Otherwise, the transaction resorts to the
“slow” validation method described previously.

Nesting Our prototype supports flattening, a simple form of nest-
ing in which nested transactions are subsumed by the outermost
transaction: it records the nesting depth in the transaction descriptor
and ignores HYTM SECTION BEGIN and HYTM SECTION END calls
for inner transactions so that only outermost transaction commits.

Dynamic memory allocation To ensure that memory allocated
during an aborted transaction does not leak, and that memory freed
inside a transaction is not recycled until the transaction commits
(in case the transaction aborts), we provide special hytm malloc
and hytm free functions. To support this mechanism, we augment
transaction descriptors with fields to record objects allocated during
the transaction (to be freed if it aborts), and objects freed during the
transaction (to be freed if it commits).

Contention management Following Herlihy et al. [10], our pro-
totype provides an interface for separable contention managers.
The library uses this interface to inform the contention manager of
various events, and to ask its advice when faced with decisions such
as whether to abort a competing transaction or to wait or abort it-
self. We have implemented the Polka contention manager [28], and
a variant of the Greedy manager [6] that times out to overcome the
blocking nature of this manager as originally proposed. We have
not experimented extensively with different contention managers
or with tuning parameters of those we have implemented.

3.4 Augmenting hardware transactions

We now discuss how our prototype augments hardware transactions
to ensure correct interaction with transactions executed using the
software library. The key observation is that a location’s logical
value differs from its physical contents only if a current software
transaction has modified that location. Thus, if no such software
transaction is in progress, we can apply a transaction directly to the
desired locations using HTM. The challenge is in ensuring that we
do so only if no conflicting software transaction is in progress.
Our prototype augments HTM transactions to detect conflicts

with software transactions at the granularity of orecs. Specifically,
the code for a hardware transaction is modified to look up the orec
associated with each location accessed to detect conflicting soft-
ware transactions. The key to the simplicity of the HyTM approach
is that the HTM ensures that if this orec changes before the hard-
ware transaction commits, then the hardware transaction will abort.
We illustrate this transformation using pseudocode below. On

the left is the “straightforward” translation of a HyTM transactional
section, where handler-addr is the address of the handler for failed
hardware transactions, and tmp is a local variable). On the right is
the augmented code produced by the HyTM compiler:

txn begin handler-addr

tmp = X;

Y = tmp + 5;
txn end

txn begin handler-addr
if (!canHardwareRead(&X))
txn abort;

tmp = X;
if (!canHardwareWrite(&Y))
txn abort;

Y = tmp + 5;
txn end

where canHardwareRead and canHardwareWrite are functions
provided by the HyTM library. They check for conflicting owner-
ship of the relevant orec, and are implemented as follows, where
h is the hash function used to map locations’ addresses to indices
into the orec table OREC TABLE:

bool canHardwareRead(a) {
return (OREC TABLE[h(a)].o mode != WRITE);

}

bool canHardwareWrite {
return (OREC TABLE[h(a)].o mode == UNOWNED);

}


