
Mask Name Description and example cause
0x001 EXOG Exogenous - Intervening code has run: cps register contents are invalid.
0x002 COH Coherence - Conflicting memory operation.
0x004 TCC Trap Instruction - A trap instruction evaluates to “taken”.
0x008 INST Unsupported Instruction - Instruction not supported inside transactions.
0x010 PREC Precise Exception - Execution generated a precise exception.
0x020 ASYNC Async - Received an asynchronous interrupt.
0x040 SIZ Size - Transaction write set exceeded the size of the store queue.
0x080 LD Load - Cache line in read set evicted by transaction.
0x100 ST Store - Data TLB miss on a store.
0x200 CTI Control transfer - Mispredicted branch.
0x400 FP Floating point - Divide instruction.
0x800 UCTI Unresolved control transfer - branch executed without resolving load on which it depends

Table 1. cps register: bit definitions and example failure reasons that set them.

TLB mappings (see above) and with CPS set to 0x140
= ST|SIZ if we “warm” the TLB first. A good way to
warm the TLB is to perform a “dummy” compare-and-
swap (CAS) to a memory locations on each page that
may be accessed by the transaction: we attempt to change
the location from zero to zero using CAS. This has the
effect of establishing a TLB mapping and making the
page writable, but without modifying the data.

coherence This test is similar to the overflow test above, ex-
cept that we perform only 16 stores, not 33, and therefore
the transactions do not fail due to overflowing the store
queue, which comprises two banks of 16 entries in the
test configuration. All threads store to the same set of lo-
cations. Single threaded, almost all transactions succeed,
with the usual smattering of EXOG failures. As we in-
crease the number of threads, of course all transactions
conflict with each other, and because we make no attempt
to back off before retrying in this test, the success rate is
very low by the time we have 16 threads. Almost all CPS
values are 0x2 = COH. The point of this test was to un-
derstand the behavior, not to make it better, so we did not
experiment with backoff or other mechanisms to improve
the success rate; we left this for the more realistic work-
loads discussed in the remainder of the paper.

3.1 Discussion

Even after R2 changes to disambiguate some failure cases, it
can be challenging in some cases to determine the reason for
transaction failure, and to decide how to react. For example,
if the ST bit (alone) is set, this may be because the address
for a store instruction is unavailable due to an outstanding
load miss, or because of a micro-TLB miss (see (3) for more
details of the Rock’s MMU).

In the first case, retrying may succeed because the cache
miss will be resolved. In the latter case, an MMU request is
generated by the failing transaction, so the transaction may
succeed if retried because a micro-TLB mapping is estab-

lished from higher levels of the MMU. However, if no map-
ping for the data in question is available in any level of the
MMU, the transaction will fail repeatedly unless software
can successfully warm the TLB, as described above.

Thus, the best strategy for a transaction that fails with
CPS value ST is to retry a small number of times, and then
retry again after performing TLB warmup if feasible in the
current context, and to give up otherwise. The optimal value
of the “small number” depends on the feasibility and cost of
performing TLB warmup in the given context.

One interesting bit in the CPS register is the UCTI bit,
which was added as a result of our evaluation of R1. We
found that in some cases we were seeing values in the CPS
register that indicated failure reasons we thought could not
occur in the transactions in question. We eventually realized
that it was possible for a transaction to misspeculate by exe-
cuting a branch that has been mispredicted before the load on
which the branch depends is resolved. As a result, software
would react to a failure reason that was in some sense in-
valid. For example, it might conclude that it must give up due
to executing an unsupported instruction when in fact it would
likely succeed if retried because the load on which the mis-
predicted branch depended would be resolved by then, so the
code with the unsupported instruction would not be executed
next time. Therefore, the UCTI bit was added to indicate
that a branch was executed when the load on which it de-
pends was not resolved. Software can then retry when it sees
UCTI set, hoping that either the transaction will succeed, or
at least that feedback about subsequent failures would not be
misleading due to misspeculation.

We discuss these and other challenges that have arisen
from certain causes of transaction failure and/or feedback
software receives about them throughout the paper. Design-
ers of future HTM features should bear in mind not only the
quality of feedback about reasons for transaction failure but
also how software can react to such failures and feedback.

160


