
Rapid Service Creation using the JUNOS SDK

James Kelly
Juniper Networks, Inc.

jamesk@juniper.net

Wladimir Araujo
Juniper Networks, Inc.

waraujo@juniper.net

Kallol Banerjee
Juniper Networks, Inc.
kallolb@juniper.net

ABSTRACT
The creation of services on IP networks is a lengthy process. The
development time is further increased if this involves the equipment
manufacturer adding third-party technology in their product. In this
work we describe how the JUNOS SDK (part of Juniper Networks
Partner Solution Development Platform) facilitates innovation and
can be used to considerably shorten the development cycle for the
creation of services based on embedding third-party software into
Juniper Networks routers. We describe how the JUNOS SDK ex-
poses programmatic interfaces to enable packet manipulation by
third-party software and how it can be used as a common platform
for deploying unique services through the combination of multiple
components from multiple parties.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—Network operating systems; C.2.6 [Computer-
Communication Networks]: Internetworking—routers; C.3
[Special-purpose and Application-based Systems]: Real-time
and embedded systems

General Terms
Design

Keywords
JUNOS, Internet Protocol, Rapid Application Development, Net-
work Services, Programmable Routers, Network Operating System

1. INTRODUCTION
Traffic manipulation or monitoring services are deployed on In-

ternet Protocol (IP) networks by either introducing a specialized
device on the path of the traffic or incorporating specialized func-
tionality on devices already present on the network. Generally,
management and ownership costs increase with the number and
diversity of devices on a network.

Customarily routers have been closed devices. Incorporating
new software-based features has been a process controlled by the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’09, August 21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-446-1/09/08 ...$10.00.

equipment manufacturer since it required access to the code base
related to the device in question. Granting access to third parties to
modify such code base is a complex business proposition. The costs
and time involved in such a process can make integration of third-
party technologies prohibitive, leaving the option of using appli-
ances as a frequent compromise. A means to simplify the process
of embedding third-party software on routers is, therefore, very de-
sirable.

A technology to solve this problem must address several key is-
sues:

• Rapid and simple development or porting

• Interaction with the platform and the environment

• Support for interacting components from several providers

• Security, reliability, and availability

Providers expect a flexible and uncomplicated set of interfaces
to interact with the platform’s environment, along with a simple
deployment model. The solution should allow technologies from
multiple third-party providers to coexist and even collaborate. More
importantly, technologies from different providers and from the de-
vice manufacturer should be able to interact.

A router deployed on a network is expected to remain reliable
even in the presence of failures of the third-party software. Providers
expect to be able to leverage the high-availability features of these
devices to improve availability of their software despite any failure
of their own component or the platform.

We describe the JUNOS SDK, a Juniper Networks solution for
embedding third-party technology on JUNOS Software [2], and
how it satisfies the requirements stated above. The JUNOS SDK
provides APIs to allow software to plug-in to the JUNOS Soft-
ware infrastructure and dynamically control device behavior. The
JUNOS SDK is available as part of the Juniper Networks Partner
Solution Development Platform (PSDP) [5]. The following section
describes the high-level architecture of a router running the JUNOS
Software operating system. Section 3 describes the JUNOS SDK,
and how it can be used to create services. Section 4 describes two
simple case studies of how to build services with the JUNOS SDK.
Finally, the last section summarizes the contributions of the JUNOS
SDK to service creation.

2. BACKGROUND ON JUNOS
In this section we present the JUNOS Software architecture at a

high level and with further detail where it pertains to understanding
the contributions of the JUNOS SDK. JUNOS Software is a sin-
gle network operating system integrating routing, switching, and
security. Most Juniper Networks hardware platforms run JUNOS

7

Software (herein JUNOS), and many of these platforms support the
JUNOS SDK. In JUNOS there is a fundamental division into three
elements: the control plane, the data plane, and the services plane.

2.1 Control, Data, and Services Planes
The control plane’s role is to manage and control the behavior

of the device including the other two planes. The control plane in
a JUNOS-based router runs on hardware called a Routing Engine
(RE). There is often an option for a redundant backup RE.

The RE’s most key element is the JUNOS Software operating
system. The basis of the JUNOS kernel comes from the FreeBSD
UNIX operating system [1], an open-source software system. This
mature, general-purpose system provides many of the essential ba-
sic functions of an operating system, such as the scheduling of re-
sources. To transform it into a network operating system, it has
been extensively modified and hardened for the specialized require-
ments of networking. The task of managing the router is shared
among the JUNOS kernel, many JUNOS daemons, and some
ephemeral utility-style applications launched on demand.

JUNOS can be controlled by any of several user interfaces, but
always in either an operational or configuration mode. As an op-
erator issues operational or configuration commands to control the
device, they first flow through the JUNOS management daemon. It
directs operational requests and manages changes to the configura-
tion database. Commands issued in the operational mode upgrade
software, trigger events, or show status and statistics to inspect the
system’s operation. The configuration database is persistent across
reboots. Configuration changes, made in configuration mode, are
propagated to any daemons that subscribe to be notified about the
given area of change in the database. The daemons have read-
only access to the database so that they can detect changes, and
change their behavior accordingly. The management daemon may
also cause other daemons to be started or stopped because of addi-
tions or deletions of configuration.

The database governs the enduring behavior of the system (mostly
the daemons) between configuration changes. In addition to man-
ual changes made to the configuration, changes in behavior can
naturally arise due to outside communication or inter-process com-
munication with another process or the kernel. In JUNOS, the con-
trol plane model stipulates internal behavior changes are consistent
with the configuration database.

On the control plane, the JUNOS kernel and many daemons ex-
pose interfaces so that other processes can dynamically and pro-
grammatically manipulate their states and make use of their ser-
vices. The routing protocol and dynamic firewall daemons both
expose such interfaces and eventually control a large part of the
data plane of the router. The routing protocol daemon (rpd) man-
ages the routes that eventually form the forwarding table. The dy-
namic firewall daemon (dfwd) controls stateless packet filters and
rate limiters that are applied to the router’s network interfaces (i.e.
ports) on ingress or egress.

The data plane’s role is to forward traffic according to the for-
warding table and firewall filters. Firewall filters, managed through
dwfd, filter packets based on layer-2 through layer-4 protocol head-
ers, and they may discard, redirect, count, log, rate limit, or change
quality-of-service (QoS) parameters. The JUNOS data plane spans
many aspects of the chassis and its modules. It is collectively re-
ferred to and abstracted as the Packet Forwarding Engine (PFE),
and comprised of ASIC-based hardware and software microcode
to perform packet processing. The PFE’s extended abilities include
rate limiting, shaping, and other QoS functions, all of which are
controlled on the control plane. Aiming to perform at
fast wire speeds and within its hardware resource limits,

the PFE generally defers stateful packet processing to the services
plane.

The services plane can be thought of as an optional extension
to the data plane to perform stateful services or any services non-
native to the PFE. An example of a JUNOS service is a stateful
firewall. The services plane runs on optionally installable and hot
swappable hardware, which we generically name MultiServices
(MS) modules [4, 3] herein. These connect to the data plane at
speeds up to 10Gbps. The services plane is the collection of all MS
modules in a chassis, and a given service can be deployed on more
than one MS module.

Each MS module runs JUNOS Software with real-time process-
ing capabilities. Yet while the kernel is basically the same one that
is present on an RE, there are far fewer and different daemons run-
ning here. Also, the hardware resources differ greatly from those
on the RE. Each MS module has a multiprocessing, multithreaded
CPU and usually more memory than an RE, so that the software-
based services here can process packets in parallel and maintain a
large amount of state.

2.2 Managing the Services Plane
The control plane works with the services plane in three key

ways.
First the service software must be installed on MS modules tar-

geted for servicing. Based on configuration, a process on the RE
pushes the software on to each MS module before it can be run,
since the modules have no disk. This could involve installing dif-
ferent software on different MS modules.

Second, once the service software starts on an MS module, it
needs to be configured with policies to administer, and it may want
to report back information through the control plane’s user inter-
face. In JUNOS, the model used to achieve this is to have a central
management component (daemon) on the control plane for each
type of service. It handles control-plane-specific functionality such
as loading configuration changes, and can communicate that in-
formation (e.g. policies) to the corresponding service application
running on an MS module. Communication can flow in the other
direction as well if the service application, for example, wanted
to send statistics for eventual display in response to an operational
command.

Third, the management component controls the data-plane to
steer packets to the services plane for servicing on an MS module.
We examine three of many approaches to doing this.

Service routes are the simplest steering approach. A service
route is a route like any other, containing a prefix against which
to match and a next hop; but the next hop is an MS module, as
opposed to an external address. Once this route is installed in the
forwarding table, packets matching it are redirected to the MS mod-
ule.

The second option is to create and apply service sets to network
interfaces on ingress or egress. A service set captures one or more
services’ policies to be applied and an MS module to which to redi-
rect packets for servicing. Finally, when the service set is applied
to an interface, the data plane marks packets flowing through that
interface as part of the service set, and accordingly steers them to
the specified MS module for servicing. The interface’s traffic is fil-
terable so that only certain packets are redirected to the service set.
This is based on any combination of match conditions offered by
JUNOS stateless firewall filters.

A third option uses the JUNOS sampling framework. This fea-
ture of the PFE duplicates packets according to a configurable pro-
file of how often to do so and for how long. All packets enter
the PFE sampling engine by way of a stateless firewall filter ap-

8

plied to an interface. These duplicate packets may be steered to
an MS module for service processing. Given the original packet
is forwarded without impact and is not modifiable by the service,
sampling is best suited to monitoring-style services.

These options in combination with other JUNOS features make
for a large array of possibilities to design a service solution.

3. CREATING SERVICES WITH THE
JUNOS SDK

In this section we maintain a focus on the services and control
planes discussed in the previous section, while looking specifically
at the JUNOS SDK to see what it enables, how it deals with mul-
tiple providers of software, and what issues surround availability
and reliability of the JUNOS Software and applications. We start
by examining the JUNOS SDK in the environment of the control
plane and how it relates to creating services.

The JUNOS SDK exposes a growing amount of JUNOS func-
tionality through application programming interfaces (APIs) that
interact with various JUNOS components. These APIs are
C-programming language headers and libraries. They are compat-
ible with C++ as well. The POSIX and principal APIs used in
FreeBSD are available, such as libc.

3.1 Creating a Management Component
The control-plane functionality available in JUNOS is centrally

controlled on the RE by the JUNOS kernel and a suite of daemons.
The Routing Engine SDK (RE SDK) exposes much of this func-
tionality, allowing the creation of a broad class of management ap-
plications and signaling protocols that run in user-space as a non-
root user. RE-SDK applications, like JUNOS processes, are gen-
erally event driven, and either daemons or utility-style applications
launched on demand from an operational command.

The support for multiple providers is inherent for RE-SDK ap-
plications, where application packages, upon install, are unpacked
into file-system paths containing a provider ID extracted from a cer-
tificate inside the package. This Juniper Networks assigned identi-
fier is unique per provider. It prevents collisions, and identifies non-
native JUNOS Software requiring verification before being run.
This involves a certificate validity check (signed by Juniper Net-
works), and configured permission of the provider ID by the router
operator. Additionally, all third-party code is controlled under a
flexible resource control policy as to not overrun or disrupt other
providers’ or native processes. This imposes limits on memory us-
age, CPU usage, the number of open file descriptors, and socket
permissions.

The kernel’s functionality plays a key role in enabling applica-
tion high-availability. The RE SDK provides APIs to access and
store opaque data in the JUNOS kernel. If valuable processed data
is at hand, the kernel’s storage can be used to help the application
pick up where it left off in the event of a restart. The JUNOS Soft-
ware also features the support of a backup RE that can take over as
the master RE in the event of a failure. This feature, called graceful
RE switchover, when turned on, also causes the master RE’s kernel
to automatically replicate this opaque data to the backup RE. An
RE-SDK daemon standing by on the backup RE can retrieve this
data. If there is no daemon running on the backup RE, it would be
launched upon switchover and retrieve the last saved data.

A management component of a larger service application would
automatically take advantage of and fit into the model described
thus far, but likely also use a good deal of the interfaces available in
the RE SDK. There are many JUNOS SDK libraries, but one such
example of a library exposing JUNOS functionality is a library that

communicates with the SDK Service Daemon, namely libssd. This
library may be used to manipulate routes (including service routes)
which are ultimately managed by rpd. Libraries may also commu-
nicate directly with the JUNOS process that manages some area of
functionality. A library to dynamically manipulate and apply state-
less firewall filters and rate limiters, libdfwd, is one such case. Both
libssd and libdfwd provide programmatic access to manipulate the
forwarding behavior on the device. Other APIs are available that
communicate with the kernel to, for example, subscribe to inter-
face state change notifications. A management component could
use some of these tools to steer traffic to an MS module and for
other purposes.

A chief motivation for the management component is its ability
to act as a proxy between the user interface and the services plane.
An RE-SDK application, when installed, can extend the operational
and configuration user interfaces in several ways.

The RE SDK provides a new language to facilitate the job of ex-
tending the schema for the hierarchy of available operational com-
mands. It allows the definition of the syntax for any new commands
and registering the RE-SDK application as the handler. When the
application receives the command, it may want to return some re-
sultant data. This return is facilitated by another new language used
to define the structure of an XML response and how to format it if
it is to be displayed to a user.

The schema for the hierarchy of object nodes available in the
configuration database may be extended as well. This capability
allows the operator to configure an RE-SDK application with new
syntax. Another language facilitates the task of defining new con-
figuration syntax and designating points within the configuration
database that, if present, require an application to be run or notified
about a configuration change. Read-only access to the configura-
tion database is possible through APIs exposed by the RE-SDK.

Finally the control and services planes are tied together with
inter-process communication (IPC) mechanisms. Usually an RE-
SDK-implemented management component pushes configuration
to the service application through some IPC mechanism. Such con-
figuration consists of application-specific policies. If the manage-
ment component is managing a service on more than one MS mod-
ule, it must send the correct policies to the service application on
each MS module. The RE SDK provides synchronized, segregated
IPC and facilitated addressing in libraries based on TCP/IP sock-
ets or through an extension of the kernel’s data store mechanism
described above.

3.2 Creating a Service Component
User-space applications for an MS module are constructed with

the Services SDK, which exposes most of the same interfaces as
does the RE SDK (e.g. libssd and libdfwd), with the addition that
it makes use of the MS module’s packet-processing-oriented re-
sources.

Because the MS module runs the JUNOS kernel with the JUNOS
TCP/IP stack, creating server-style applications with the Services
SDK is equivalent to using the RE SDK. The focus of the services
plane and this work, however, is not on this type of applications,
but on applications that process selected packets transiting the data
plane. We call these packets data traffic. These packets are se-
lected using the aforementioned steering methods. Two models are
available for building such applications in the Services SDK. An
individual MS module supports only one model at a time.

3.2.1 The Process Model
In this model, one constructs a two-component daemon to run on

the MS module as in Figure 1. The control component communi-

9

Figure 1: Architecture of a Service Application

cates with the management component. At a minimum it receives
and stores the configured service policies, but sending statistics and
status information is commonplace as well. The data component
uses these stored policies and performs the servicing on the data
traffic. The data component spans many real-time software threads,
each tied to a single and exclusively used hardware thread of the
MS module’s CPU. Each of these data threads spins in a data loop
polling for packets. During the startup phase before these threads
are started, the Services SDK and JUNOS kernel set up a series
of zero-copy input and output first-in-first-out (FIFO) queue pairs,
where eventually one data thread is tied to and services one pair
of queues in its data loop. Generally the steps of each loop are
to receive a packet from the input queue if one is available, pro-
cess it, and enqueue it in its output queue. Processing is done with
either the service policies stored in the memory shared with the
control component or saved application state (usually for a flow or
session).

The kernel is responsible for putting the data traffic steered from
the data plane into the input queues, and re-inserting the packets
from the output queues back into the data plane. The MS module
also has many configurable boot-time properties. One that is of
interest here is how the kernel distributes data traffic among the
input queues of the data threads, since there could be between 1 and
21 such threads and queues. There are two options: round-robin
distribution or flow affinity. Flow affinity indicates that packets of
the same flow are always directed to the same input queue, and
hence, to the same data thread. The definition of a flow in this
case comes from a 3-tuple: the IP addresses and the identifier for
protocol the IP packet is carrying.

Part of the Services SDK provides the APIs that assist the setup
of this multithreaded environment to work with the hardware threads
of the CPU. It also includes fast-access shared memory APIs, lock-
ing constructs suitable to the environment, and packet manipulation
functions.

3.2.2 The Plug-in Model
The Services SDK provides the plug-in model to allow several

data-traffic-oriented services to coexist and even cooperate through
an event framework within a single MS module. Plug-ins can send
and receive custom events in a loosely coupled way, but here we
focus on the standard system events. Furthermore, this model fa-
cilitates maintaining the service policies and accessing flow- or
session-based state. In this case a flow is defined by the standard

5-tuple: 3-tuple with port numbers when available. Also, IP frag-
ments are automatically reassembled before processing.

In this model, a JUNOS daemon named mspmand starts and cre-
ates its own data component to run one or multiple plug-ins linked
into it as shown in Figure 2. The plug-ins are implemented as
shared libraries. Each has an entry function that, when called, reg-
isters callback functions to serve as the control and data event han-
dlers. Control events, called from non-data threads, can initialize
the plug-in or update downloaded policies according to a manage-
ment component. Data threads are managed by mspmand. Each
data thread internally polls for packets and dispatches them as data
events serially through a chain of plug-ins. This model works only
with the service-set steering method, which allows for a service
order to be specified by the operator per service set. This order ul-
timately determines the order of packet delivery, and hence service
processing.

Figure 2: Packet distribution to plug-ins from mspmand

A session context to store custom session state is delivered as
meta-data accompanying packets with each data event. This mech-
anism can expedite processing if plug-ins store policy decisions in
the context once they have been looked up for the first packet of a
session. Furthermore, packets of the same session are always dis-
patched one at a time to reduce lock contention for session state
access.

This model has numerous advantages for some styles of service
applications. First, if a service is flow or session based, the frame-
work sets up the data loops and provides a flow context with every
packet. Services from multiple providers (Juniper Networks and
third parties) can run on a single MS module to collaborate in a con-
figurable order. Also, this model supports pairing two MS modules
together, where one is standing by with replicated state informa-
tion in the event of a failure. Overall, this model generally provides
more features and facilitates rapid development where service pro-
cessing is the main focus.

4. CASE STUDIES: SERVICES CREATED
WITH THE JUNOS SDK

In this section we describe our steps to build two different appli-
cations with the JUNOS SDK, and how the concepts presented in
the previous sections were put into real applications.

4.1 MoniTube
MoniTube is an application that can be used to monitor the qual-

ity of IPTV streams at any point where it is deployed on the net-
work by using a metric known as the media delivery index (MDI)
[6]. MoniTube can also mirror IPTV streams to other locations.

When MoniTube is installed, the JUNOS user interface is seam-
lessly extended to allow for its configuration and for reporting of

10

the streams’ quality through operational commands. Configura-
tions can then be entered to separately identify the streams of inter-
est for monitoring and mirroring. A MoniTube management appli-
cation runs on the router’s RE to load this configuration and transfer
it to a MoniTube service application running on an MS module.

The MoniTube application needs to see all packets of the streams
it is to monitor and mirror with no need to alter the original streams.
Therefore, the application’s packet-processing functionality runs
on an MS module that does not receive the original streams, but
rather copies of all its packets.

To receive copies of packets, we take advantage of the JUNOS
sampling extension that provides the ability for an operator to send
sampled packets to an MS module where third-party code can pro-
cess them. Our application needs to receive all packets selected for
sampling, so the sampling rate is configured as 1, indicating that ev-
ery packet steered to the JUNOS sampling framework is sampled
to the target module, and hence, the MoniTube service.

We use firewall filters applied to the router’s interfaces to select
packets for which sampling is required. This approach gives the
operator flexibility to select all or a subset of the router’s interfaces
and traffic to be under MoniTube’s management. For example, if
there were a variety of traffic flowing into the router through a given
interface, the operator could setup a filter to match all UDP traffic
in 226.0.1.0/18 and 228.1.2.3/32 to be sampled, and thus, directed
to MoniTube.

The MoniTube service is implemented as a multithreaded dae-
mon running on the MS module. Thus, it follows the Services
SDK’s process model. Its main thread (control component) is pri-
marily responsible for communication with the management com-
ponent; but more interesting are its (up to) 18 other real-time data
threads dedicated to packet processing. These threads poll the input
packet queues, dequeue packets, perform the monitoring calcula-
tions, do any packet manipulation for mirroring (e.g. changing the
destination address), and then if the packet is not mirrored, dispose
of the packet since it is a duplicate of the real selected traffic. If
the packet is to be mirrored, then we send it as modified during the
processing, enqueuing it into an output queue. This application ar-
chitecture can easily be applied to dealing with real packets instead
of copies, where the original monitored packet is sent by default
and not dropped. However, with sampled traffic, we know we will
never adversely impact the original IPTV streams.

4.2 Equilibrium
Equilibrium is an application that provides two simple function-

alities that are implemented and potentially deployed as separate
services: load balancing and traffic classification.

The load-balancing service has some configured façade addresses,
and for each has a pool of real addresses. When it sees traffic des-
tined to a façade address, it redirects it to an address from the pool
with the least load based on the number of connections. The clas-
sification service provides the ability to redirect traffic to a single
different destination address, but based on a match with a destina-
tion port number rather than a destination (façade) address.

Once installed, just as with MoniTube, a management compo-
nent runs on the RE, reading in any configuration for each of these
services. It passes this information down to the service’s control
component running on the MS module. Multiple MS modules may
also be configured to run one or both of the Equilibrium services,
which work through JUNOS service sets. The management com-
ponent is also responsible for gathering this information, and for
sending only the required policies to the Equilibrium service run-
ning on each module.

The motivation for using JUNOS service sets was twofold. First,
unlike the case of MoniTube, both services need to act on real traf-
fic transiting the router. A service set specifies an ordered set of
services with this requirement, and one or more sets may be asso-
ciated with an MS module. Data traffic is redirected to the service
set when filtering on interfaces detects matched packets that need to
be serviced. Second, we want to allow Equilibrium services to be
run together on one MS module, and potentially with other JUNOS
or third-party services. The plug-in model achieves this aim, and
generally plug-ins are meant to work with service sets.

In accordance with the configured order in the service set, pack-
ets pass through the data-event handlers of the Equilibrium services
and any other services configured in the same set. When seeing the
first packet of a session, we look into our configuration policies for
façade-address or port matches and store the corresponding action
in the session context. For subsequent packets of the same ses-
sion this action is available in the context and immediately applied.
This method expedites servicing, as we simply retrieve the original
action taken on packets of each flow.

Both of the applications described are sample applications pro-
vided with the JUNOS SDK, where all code, build, and deployment
instructions are provided.

5. CONCLUSION
We have explained the three main conceptual facets of JUNOS,

and we focused on how the JUNOS SDK permits service-plane de-
velopment with the Services SDK. Specifically, developed software
can be collaborative, modular, and allows for its flexible arrange-
ment for service processing. By examining the RE SDK, we also
saw that numerous libraries expose the ability to create a broad
range of applications in the control plane, and that by use of ei-
ther the RE or Services SDK, the data plane (PFE) hardware re-
sources are malleable under the control of third-party code. JUNOS
SDK application packages are easily installed in familiar ways on
a JUNOS system while security is still maintained. Furthermore,
the applications created with the JUNOS SDK already work on the
standard releases of JUNOS that are installed on a substantial num-
ber of supported Juniper Networks devices.

The JUNOS SDK, offered through Juniper Networks Partner So-
lution Development Platform enables rapid service creation. It pro-
vides straightforward extensibility and mitigates well-known issues
with the classic closed nature of networking equipment. As a result,
the JUNOS SDK offers a novel approach to facilitate innovation in
the network.

6. REFERENCES
[1] FreeBSD web site. http://www.freebsd.org/.
[2] JUNOS Software, Technical Documentation, Juniper

Networks. http://www.juniper.net/techpubs/
software/junos/index.html.

[3] Multiservices DPC Datasheet, Juniper Networks.
http://www.juniper.net/us/en/local/pdf/
datasheets/1000258-en.pdf.

[4] Multiservices PIC Datasheet, Juniper Networks.
http://www.juniper.net/us/en/local/pdf/
datasheets/1000199-en.pdf.

[5] Partner Solution Development Platform (PSDP), Juniper
Networks. http://www.juniper.net/us/en/
products-services/nos/junos/psdp/.

[6] J. Welch and J. Clark. A Proposed Media Delivery Index
(MDI). IETF RFC 4445, April 2006.

11

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

