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Image Composition

Modeled after lecture by Alexei Efros.
Slides by Efros, Durand, Freeman, Hays, Fergus, Lazebnik, Agarwala, Shamir, and Perez.

© NASA

Image Compositing

Slide credit: A. Efros

Compositing Procedure
1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

Composite by 
David Dewey

2. Blend them into the composite (in the right order)

Slide credit: A. Efros

Need blending

Slide credit: A. Efros

Alpha Blending / Feathering
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Iblend = αIleft + (1-α)Iright

Slide credit: A. Efros

Setting alpha: simple averaging

Alpha = .5 in overlap region Slide credit: A. Efros
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Setting alpha: center weighting

Alpha = dtrans1 / (dtrans1+dtrans2)

Distance
transform

Ghost!

Slide credit: A. Efros

Affect of Window Size
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Slide credit: A. Efros

Affect of Window Size
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Slide credit: A. Efros

Good Window Size
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“Optimal” Window:  smooth but not ghosted

Slide credit: A. Efros

What is the Optimal Window?

To avoid seams
• window = size of largest prominent feature

To avoid ghosting
• window <= 2*size of smallest prominent feature

Natural to cast this in the Fourier domain
• largest frequency <= 2*size of smallest frequency
• image frequency content should occupy one “octave” (power of two)

FFT

Slide credit: A. Efros

What if the Frequency Spread is Wide

Idea (Burt and Adelson)
• Compute Fleft = FFT(Ileft), Fright = FFT(Iright)

• Decompose Fourier image into octaves (bands)
– Fleft = Fleft

1 + Fleft
2 + …

• Feather corresponding octaves Fleft
i with Fright

i

– Can compute inverse FFT and feather in spatial domain

• Sum feathered octave images in frequency domain

Better implemented in spatial domain

FFT

Slide credit: A. Efros
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Octaves in the Spatial Domain

Bandpass Images

Lowpass Images

Slide credit: A. Efros

Laplacian Pyramid Blending
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Left pyramid Right pyramidblend

Slide credit: A. Efros

Laplacian Pyramid Blending

Slide credit: A. Efros

laplacian
level
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level
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left pyramid right pyramid blended pyramid

Laplacian Pyramid Blending

General Approach:
1. Build Laplacian pyramids LA and LB from images A and B

2. Build a Gaussian pyramid GR from selected region R

3. Form a combined pyramid LS from LA and LB using nodes 
of GR as weights:
• LS(i,j) = GR(I,j,)*LA(I,j) + (1-GR(I,j))*LB(I,j)

4. Collapse the LS pyramid to get the final blended image

Slide credit: A. Efros

Laplacian Pyramid Blending

Slide credit: A. Efros
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Laplacian Pyramid Blending

© david dmartin (Boston College)
Slide credit: A. Efros

Problems with blending

Misaligned (moving) objects become ghosts

Slide credit: A. Efros

Seams

Segment the images
• Single source image per segment

• Find optimal seams between segments

• Optionally blend across seams

Slide credit: A. Efros

min. error boundary

Seams in texture synthesis

overlapping blocks vertical boundary

__ ==

22

overlap error
Slide credit: A. Efros

Seam Carving

Seam Carving ScalingCropping Shamir

Seam Carving

Shamir
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Seam Carving

Shamir

Seam Carving

Shamir

Seam Carving
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Seam Carving

Low cost

High cost

Shamir

Seam Carving

Dynamic programming
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Removal of vertical seams

Shamir

Seams with Graphcuts

What if we want similar “cut-where-things-
agree” idea, but for closed regions?
• Dynamic programming can’t handle loops
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Seams with Graph cuts 

n-links

s

t a cuthard 
constraint

hard 
constraint

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Boykov&Jolly, ICCV’01

Seams with Graph Cuts

Lazy Snapping
Interactive segmentation using graphcuts

Problem with seams

What if colors/intensities are different?

Slide credit: F. Durand

Problem with seams

What if colors/intensities are different?

Slide credit: F. Durand

Gradient domain image editing

Slide credit: F. Durand

Gradient domain image editing
Motivation: 

Human visual system is very sensitive to gradient
Gradient encode edges and local contrast quite well

Approach: 
Edit in the gradient domain
Reconstruct image from gradient

Various instances of this idea,  I’ll mostly follow Perez et al. Siggraph 2003

http://research.microsoft.com/vision/cambridge/papers/perez_siggraph03.pdf

r

Slide credit: F. Durand
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Gradient domain 
view of image
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Slide credit: F. Durand

Membrane interpolation

Laplace equation (a.k.a. membrane equation )

Slide credit: F. Durand

1D example: minimization

Minimize derivatives to interpolate

Min (f2-f1)2

Min (f3-f2)2

Min (f4-f3)2

Min (f5-f4)2

Min (f6-f5)2
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With 
f1=6
f6=1

Slide credit: F. Durand

1D example: derivatives

Minimize derivatives to interpolate
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Denote it Q

Slide credit: F. Durand

1D example: set derivatives to zero

Minimize derivatives to interpolate
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Slide credit: F. Durand

1D example

Minimize derivatives to interpolate

Pretty much says that second 
derivative should be zero
(-1 2 -1) 

is a second derivative filter
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Slide credit: F. Durand
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Membrane interpolation

Laplace equation (a.k.a. membrane equation )

Mathematicians will tell you there is an 
Associated Euler-Lagrange equation:

• Where the Laplacian ∆ is similar to -1 2 -1in 1D

Kind of the idea that we want a minimum, so we kind 
of derive and get a simpler equation

Slide credit: F. Durand

Seamless Poisson cloning
Given vector field v (pasted gradient), find the 

value of f in unknown region that optimize: 
Previously, v was null

Pasted gradient Mask

Background

unknown
region

Slide credit: F. Durand

What if v is not null: 2D
Variational minimization (integral of a functional)

with boundary condition

Euler-Lagrange equation:

(Compared to Laplace, 
we have replaced ∆ =0 by ∆ = div)

Slide credit: F. Durand

Discrete 1D example: minimization

Copy to

Min ((f2-f1)-1)2

Min ((f3-f2)-(-1))2

Min ((f4-f3)-2)2

Min ((f5-f4)-(-1))2

Min ((f6-f5)-(-1))2

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

? ? ? ?

With 
f1=6
f6=1

Slide credit: F. Durand

1D example: minimization

Copy to

Min ((f2-6)-1)2 ==> f22+49-14f2
Min ((f3-f2)-(-1))2 ==> f32+f22+1-2f3f2 +2f3-2f2
Min ((f4-f3)-2)2 ==> f42+f32+4-2f3f4 -

4f4+4f3
Min ((f5-f4)-(-1))2 ==> f52+f42+1-2f5f4 +2f5-2f4
Min ((1-f5)-(-1))2 ==> f52+4-4f5
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Slide credit: F. Durand

1D example: big quadratic

Copy to

Min (f22+49-14f2
+ f32+f22+1-2f3f2 +2f3-2f2
+ f42+f32+4-2f3f4 -4f4+4f3
+ f52+f42+1-2f5f4 +2f5-2f4
+ f52+4-4f5) 

Denote it Q

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

-1

-1

-1

+2

+1

0

1

2

3

4

5

6

0
1 2 3 4 5 6 7

? ? ? ?

Slide credit: F. Durand
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1D example: derivatives

Copy to
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Slide credit: F. Durand

1D example: set derivatives to zero

Copy to
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Slide credit: F. Durand

1D example

Copy to
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Slide credit: F. Durand

1D example: remarks
Copy to

Matrix is sparse
Matrix is symmetric 
Everything is a multiple of 2  

• because square and derivative of square
Matrix is a convolution (kernel -2 4 -2)
Matrix is independent of gradient field. Only RHS is
Matrix is a second derivative
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Slide credit: F. Durand

What if v is not null: 2D
Variational minimization (integral of a functional)

with boundary condition

Euler-Lagrange equation:

(Compared to Laplace, 
we have replaced ∆ =0 by ∆ = div)

Slide credit: F. Durand

Discrete Poisson solver
Two approaches: 

• Minimize variational problem

• Solve Euler-Lagrange equation

In practice, variational is best

In both cases, need to discretize derivatives
• Finite differences over 4 pixel neighbors

• We are going to work using pairs
– Partial derivatives are easy on pairs 

– Same for the discretization of v

p q

Slide credit: F. Durand
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Discrete Poisson solver

p q

(all pairs that 
are in Ω)

Discretized 
gradient

Discretized 
v: g(p)-g(q)

Only for 
boundary pixels

Boundary condition

Minimize variational problem

Rearrange and call Np the neighbors of p

Big yet sparse linear system

Slide credit: F. Durand

Discrete Poisson solver

p q

(all pairs that 
are in Ω)

Discretized 
gradient

Discretized 
v: g(p)-g(q)

Only for 
boundary pixels

Boundary condition

Minimize variational problem

Rearrange and call Np the neighbors of p

Big yet sparse linear system

Slide credit: F. Durand

Image Composition Results

P e r e z e t a l . S I G G R A P H 0 3 P e r e z e t a l . S I G G R A P H 0 3

P e r e z e t a l . S I G G R A P H 0 3 P e r e z e t a l . S I G G R A P H 0 3
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Putting it all together

Compositing images
• Have a clever blending function

– Feathering

– Center-weighted

– blend different frequencies differently
– Gradient based blending

• Choose the right pixels from each image
– Dynamic programming – optimal seams
– Graph-cuts

Now, let’s put it all together:
• Interactive Digital Photomontage, 2004 (video)

Slide credit: A. Efros

Interactive Digital Photomontage

A g a r w a l a e t a l . S I G G R A P H 0 4

Interactive Digital Photomontage

A g a r w a l a e t a l . S I G G R A P H 0 4
Interactive Digital Photomontage

A g a r w a l a e t a l . S I G G R A P H 0 4

Interactive Digital Photomontage

A g a r w a l a e t a l . S I G G R A P H 0 4
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Scene Completion Using 
Millions of Photographs

James Hays and Alexei A. Efros
SIGGRAPH 2007

Slides by J. Hays and A. Efros H a y s e t a l . S I G G R A P H 0 7

H a y s e t a l . S I G G R A P H 0 7 Efros and Leung result H a y s e t a l . S I G G R A P H 0 7

H a y s e t a l . S I G G R A P H 0 7

Scene Matching for Image Completion

H a y s e t a l . S I G G R A P H 0 7
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H a y s e t a l . S I G G R A P H 0 7

Data

2.3 Million unique images from Flickr 
groups and keyword searches.

H a y s e t a l . S I G G R A P H 0 7

H a y s e t a l . S I G G R A P H 0 7 Scene Completion Result H a y s e t a l . S I G G R A P H 0 7
The Algorithm

Input image Scene Descriptor Image Collection

200 matches20 completions
Context matching
+ blending

…

…

Scene Matching

H a y s e t a l . S I G G R A P H 0 7
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Scene DescriptorScene Descriptor

H a y s e t a l . S I G G R A P H 0 7

… 200 total H a y s e t a l . S I G G R A P H 0 7

Context MatchingContext Matching

H a y s e t a l . S I G G R A P H 0 7

H a y s e t a l . S I G G R A P H 0 7 H a y s e t a l . S I G G R A P H 0 7
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Result Ranking

We assign each of the 200 results a score 
which is the sum of:

The scene matching distance

The context matching distance 
(color + texture)

The graph cut cost H a y s e t a l . S I G G R A P H 0 7

Top 20 ResultsTop 20 Results

H a y s e t a l . S I G G R A P H 0 7

H a y s e t a l . S I G G R A P H 0 7 H a y s e t a l . S I G G R A P H 0 7

H a y s e t a l . S I G G R A P H 0 7 H a y s e t a l . S I G G R A P H 0 7
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H a y s e t a l . S I G G R A P H 0 7
Why does it work?

Hays and Efros, SIGGRAPH 2007

Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a
collection of 20,000 images

Hays and Efros, SIGGRAPH 2007

10 nearest neighbors from a
collection of 2 million images

Hays and Efros, SIGGRAPH 2007


