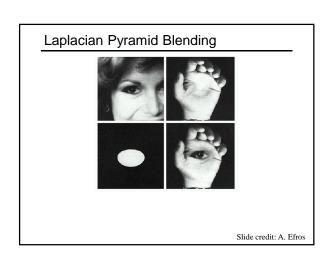


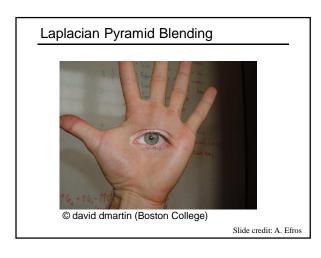
#### Laplacian Pyramid Blending

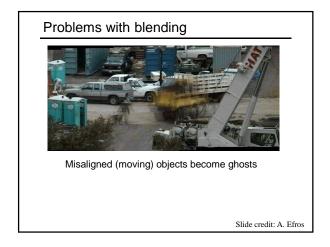
#### General Approach:

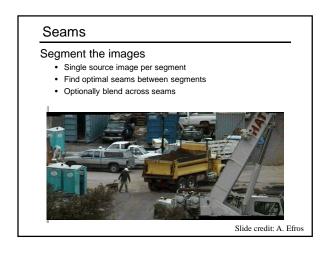
- 1. Build Laplacian pyramids LA and LB from images A and B
- 2. Build a Gaussian pyramid *GR* from selected region *R*
- 3. Form a combined pyramid LS from LA and LB using nodes of GR as weights:
  - LS(i,j) = GR(I,j,)\*LA(I,j) + (1-GR(I,j))\*LB(I,j)
- 4. Collapse the LS pyramid to get the final blended image

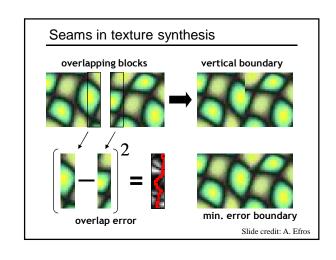
Slide credit: A. Efros

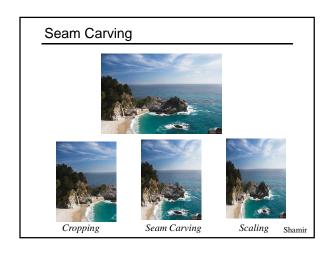


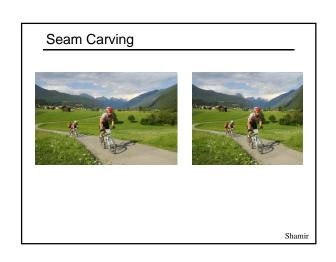


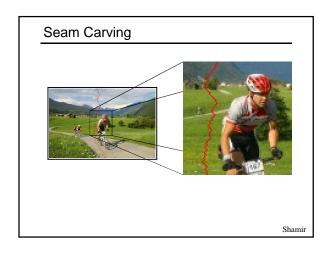


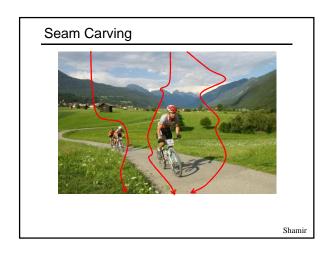


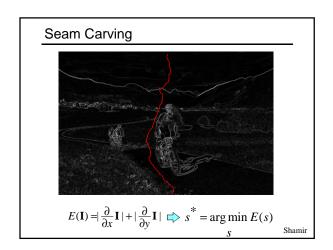


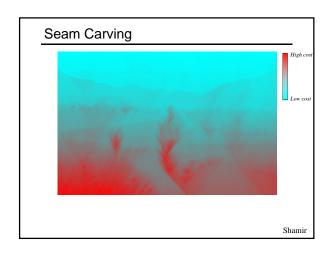


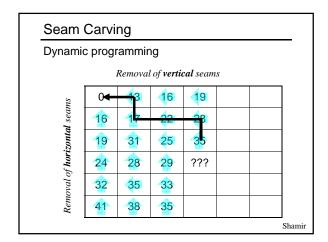




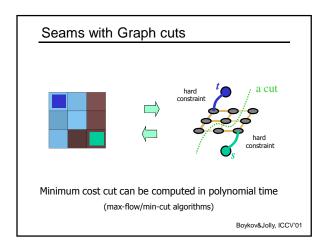


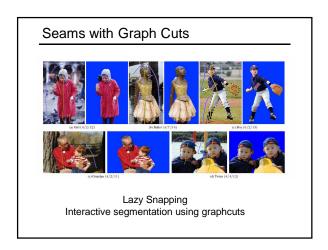


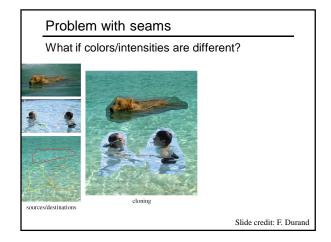


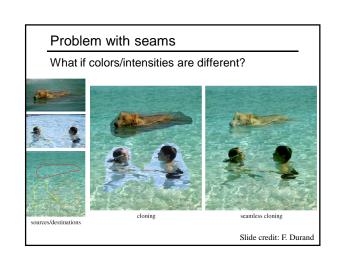


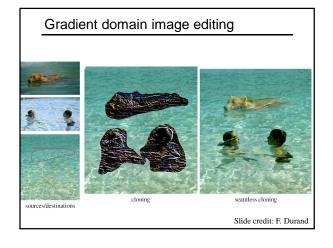
# Seams with Graphcuts What if we want similar "cut-where-things-agree" idea, but for closed regions? • Dynamic programming can't handle loops

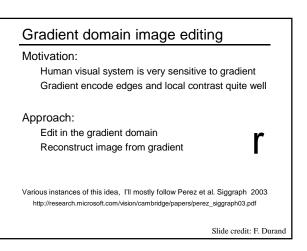


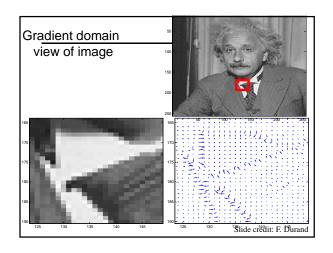


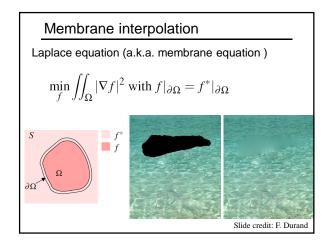


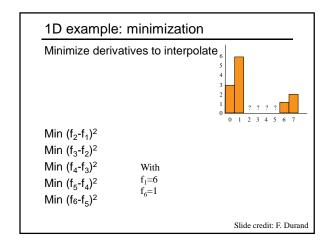


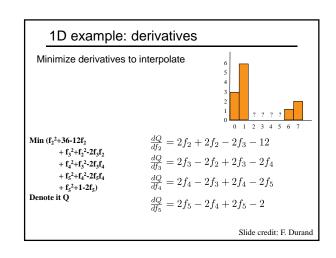


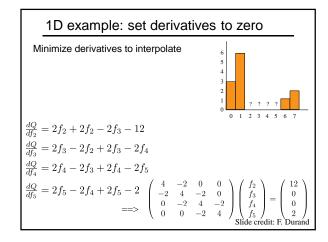


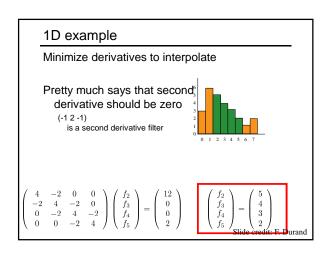












#### Membrane interpolation

Laplace equation (a.k.a. membrane equation )

$$\min_{f} \iint_{\Omega} |\nabla f|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

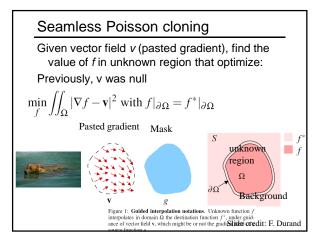
Mathematicians will tell you there is an Associated Euler-Lagrange equation:

$$\Delta f = 0$$
 over  $\Omega$  with  $f|_{\partial\Omega} = f^*|_{\partial\Omega}$ 

• Where the Laplacian  $\Delta$  is similar to -1 2 -1in 1D

Kind of the idea that we want a minimum, so we kind of derive and get a simpler equation

Slide credit: F. Durand



#### What if v is not null: 2D

Variational minimization (integral of a functional) with boundary condition

$$\min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega},$$

Euler-Lagrange equation:

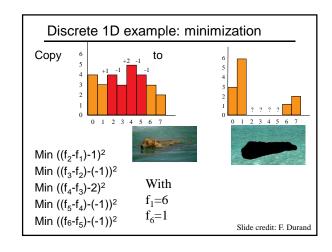
$$\Delta f = \operatorname{div} \mathbf{v} \text{ over } \Omega, \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

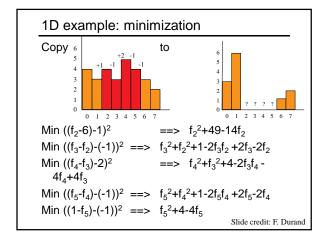
where div  $\mathbf{v} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$  is the divergence of  $\mathbf{v} = (u, v)$ 

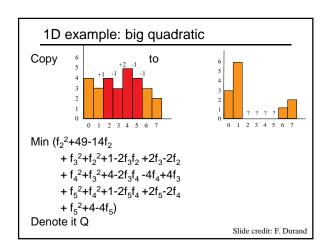
(Compared to Laplace,

we have replaced  $\Delta = 0$  by  $\Delta = \text{div}$ )

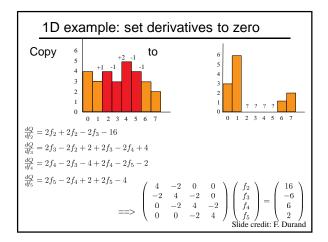
Slide credit: F. Durand

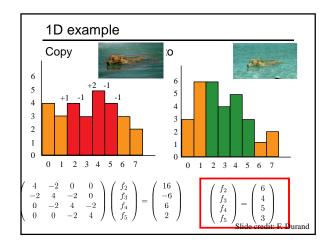


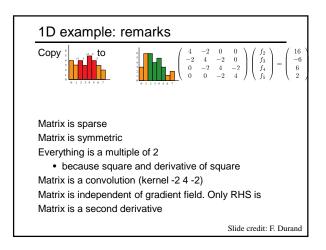




#### 







#### What if v is not null: 2D

Variational minimization (integral of a functional) with boundary condition

$$\min_{f}\iint_{\Omega}|\nabla f-\mathbf{v}|^{2}\text{ with }f|_{\partial\Omega}=f^{*}|_{\partial\Omega},$$

Euler-Lagrange equation:

$$\Delta f = \operatorname{div} \mathbf{v} \text{ over } \Omega, \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}$$

where div**v** = 
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$$
 is the divergence of **v** =  $(u, v)$ 

(Compared to Laplace, we have replaced  $\Delta$  =0 by  $\Delta$  = div)

Slide credit: F. Durand

#### Discrete Poisson solver

#### Two approaches:

- Minimize variational problem
- Solve Euler-Lagrange equation In practice, variational is best

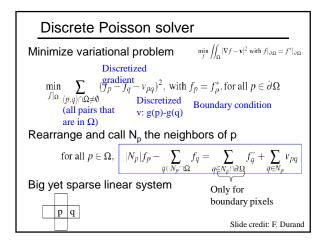
#### $$\begin{split} & \min_{f} \iint_{\Omega} |\nabla f - \mathbf{v}|^2 \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}, \\ & \Delta f = \text{div} \mathbf{v} \text{ over } \Omega, \text{ with } f|_{\partial\Omega} = f^*|_{\partial\Omega}. \end{split}$$

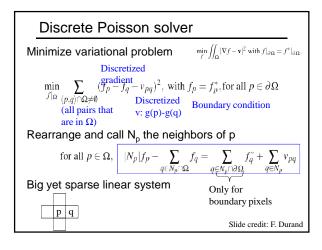
#### In both cases, need to discretize derivatives

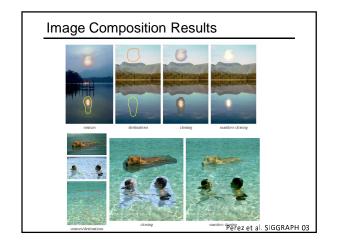
- Finite differences over 4 pixel neighbors
- We are going to work using pairs
  - Partial derivatives are easy on pairs
  - Same for the discretization of v

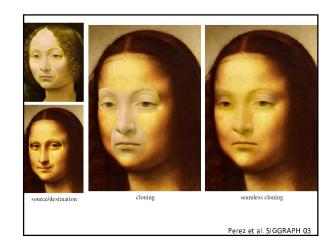


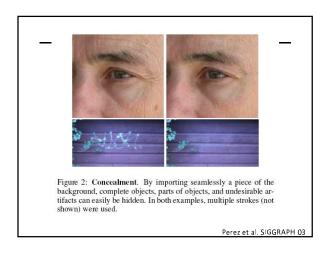
Slide credit: F. Durand

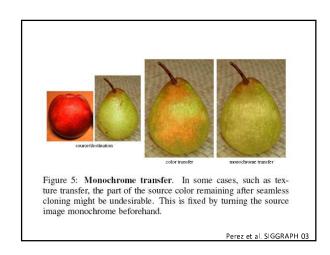












#### Putting it all together

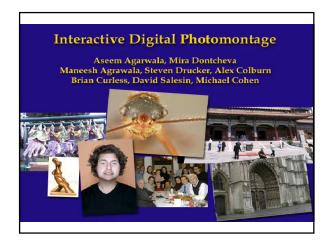
#### Compositing images

- Have a clever blending function
  - Feathering
  - Center-weighted
  - blend different frequencies differently
  - Gradient based blending
- · Choose the right pixels from each image
  - Dynamic programming optimal seams
     Graph-cuts

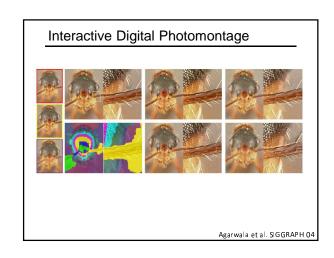
#### Now, let's put it all together:

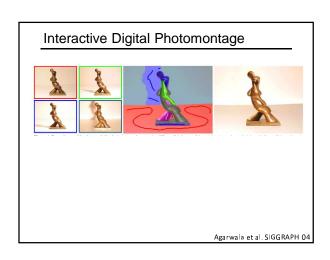
• Interactive Digital Photomontage, 2004 (video)

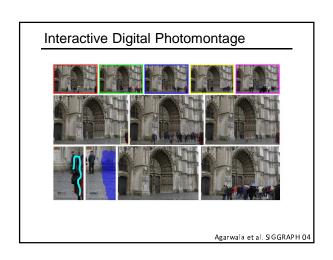
Slide credit: A. Efros



## Interactive Digital Photomontage Agarwala et al. SIGGRAPH 04







### Scene Completion Using Millions of Photographs

James Hays and Alexei A. Efros SIGGRAPH 2007

Slides by J. Hays and A. Efros







