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1 Introduction

Variational Inference (VI) is a deterministic alternative to MCMC. Think of it this
way: VI is a deterministic algorithm that can be randomized, whereas MCMC is a
randomized algorithm. VI replaces sampling with optimization. Let’s say the big circle
in Figure 1 represents the space for all possible variables:

Figure 1: Space of distribution family p and the space of subfamily q. KL divergence
measures the closeness of two distributions p(z|x) and q(z|ν).

In VI we define a subfamily of distribution over latent variables q(z|ν). The objective
here is to find a point in the subfamily distribution that is closest to our posterior p(z|x).
KL divergence measures the closeness or distance between the two distributions (p and
q). Note here that if you start with a graphical model as Figure 2a and take out one
edge you would get a subfamily in Figure 2b.

Let’s go back to a setting where we have a mixture model (Figure 3). The shaded
x1, ..., x4 in Figure 3 represent observed data. Note here that the components β are in
fact dependent on all these latent variables z.
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Figure 2: The connected graphical model (a) and the subfamily (b)

Figure 3: Bayesian Mixture Model

The VI method is an adaptation of ideas in statistical physics to more general sta-
tistical models. The VI method was pioneered by Michael Jordan’s group at MIT in
the mid 90s. The driving force behind this was a statistician by the name of Tommi
Jaakkola. We are understanding more about how optimization can help us understand
Bayesian Inference models because of VI. Other members of the group include Saul,
Ghahramani, and Jordan himself. Jaakkola’s dissertation is really interesting for under-
standing more about this. Others who have worked on optimization include Globerson,
Wainwright, and Sontag.
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Recall Jenson’s bound of p(x). Let x1:N be observations and z1:M be hidden variables.

log p(x) = log

∫
z

p(x, z) = log

∫
z

p(x, z)
q(z|ν)

q(z|ν)
(1)

≥
∫
z

q(z|ν) log p(x, z)−
∫
z

q(z|ν) log q(z|ν) (2)

= Eq log p(x,Z)− Eq log q(Z|ν). (3)

The last line above defines our objective function for optimization.

L(ν) = Eq log p(x,Z)− Eq log q(Z|ν). (4)

This is called “ELBO”: Evidence Lower BOund.

2 Kullback-Leibler divergence

First we define what KL divergence is.

KL(q(z)‖p(z|x)) =

∫
z

q(z) log
q(z)

p(z|x)
(5)

= Eq log
q(z|ν)

p(z|x)
(6)

= Eq log q(z|ν)− Eq log p(z|x). (7)

(a) (b)

Figure 4: An illustration of KL divergence. a. Blue curve is the distribution p(x)
and red curve is the distribution q(x). b. The shade region is to be integrated to get
DKL(p‖q). Note KL divergence is not symmetric.

Recall p(z|x) = p(x, z)/p(x). Then equation (7) is equal to

Eq log q(z|ν)− Eq log p(x, z) + log p(x). (8)
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Compare equation (4) and equation (8), we see here that minimizing KL is equivalent
to maximizing ELBO.

3 Variational inference

Assume p(x, z) is in the exponential family,

p(x, z|η) = exp
{
ηT t(x, z)− a(η)

}
. (9)

This implies that

p(zi|z−i,x) = exp
{
η(z−i,x)Tu(zi)− a(η(z−i,x))

}
. (10)

Now define the variational family

q(z|ν) =
m∏
i=1

q(zi|νi). (11)

This is called the mean-field family (or the fully factorized family). We can denote
entropy here as

H(q) =
m∑
i=1

H(q(zi|νi)) (12)

Further assume each q(zi|νi) is in the same exponential family as p(zi|z−i,x)

q(zi|νi) = exp
{
νTi u(zi)− a(νi)

}
. (13)

Notice that a is the same as in equation (10).

H(q(zi|νi)) = −E log q(zi|νi) (14)

= −νTi E[u(zi)] + a(νi) (15)

= −νTi a′(νi) + a(νi), (16)

where a′(νi) = ∂a(νi)
∂νi

.
Here we use coordinate ascent with νi. The partial derivative of E[log p(x, z)] with

respect to νi equals ∂
∂νi

E[log p(zi|z−i,x)].

∂

∂νi
L(ν) =

∂

∂νi

(
E
[
η(z−i,x)Tu(zi)

]
− E [a(η(z−i,x))]− νTi a′(νi) + a(νi)

)
(17)

=
∂

∂νi

(
E [η(z−i,x)]T a′(νi)− E [a(η(z−i,x))]− νTi a′(νi) + a(νi)

)
(18)

= a′′(νi)E [η(z−i,x)]T − a′(νi)− νTi a′′(νi) + a′(νi) (19)

= a′′(νi)(E [η(z−i,x)]T − νTi ) (20)

where starting from (17) to (18), we used the mean-field approximation that u(zi) and
η(z−i,x) are independent. Notice here that, νi = E [η(z−i,x)] is our coordinate update
and it does not depend on νi because of the mean-field approximation.
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