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1 What is Nonparametric Estimation?

1.1 Parametric Estimation: estimate parameters in Rk

Examples:

1. X1:n i.i.d ∼Nd(µ,Σ) Estimating µ or Σ is a parametric problem.

2. Yi = XT
i β + σεiEsimating β or σ is a parametric problem.

1.2 Noparametric Esimation: estimate in�nite dimensional

parameters, typically functions.

Examples:

1. X1:n(Xi ∈ Rk for i = 1 : n) i.i.d ∼probability density function p. Esti-
mating p :Rk→ R is a nonparametric problem.

2. Yi = f(Xi) + σεiEsimating f :Rk→ R is a nonparametric problem.

2 Nonparametric Density Estimation

2.1 The histogram

X1:ni.i.d with density p(•) on [0,1]. Let B1:mbe a partition of [0,1] called bins.
Assume that all bins are intervals with length h. Estimate p by a constant value
on each bin: for x∈ Bj ,

p(x) ' 1
|Bj |

�
Bj

p(x)dx' 1
h

P(X ∈ Bj) =
1
h

E[I(X ∈ Bj)]

To estimate, E 1
n

∑n
i=1, so here

p̂(x) =
1

nh

n∑
i=1

I(Xi ∈ Bj) =
nj

nh
, x ∈ Bj
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Figure 1:
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where nj is the number of ovservations in bin Bj . And full piecewise constant
estimator is

p̂n(x) =
m∑

j=1

nj

nh
I(x ∈ Bj)

called HISTOGRAM.

2.2 Kernel density estimator

Let F (•)be the cdf of the sample, then

F (x) = P(X ≤ x) = E[I(X ≤ x)]

To estimate, E 1
n

∑n
i=1, so we obtain the estimator

F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x)

called Empirical CDF.
According to Glivenko-Cantelli's theorem

sup
x
|F̂n(x)− F (x)| → 0,n →∞, a.s.

From F to p:

p(x) =
dF (x)

dx
' F (x + h/2)− F (x− h/2)

h

for small h > 0.
And this yields estimator (Rosenblatt, 1956)

p̂n(x) =
F̂n(x + h/2)− F̂n(x− h/2)

h

and its generic form
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p̂n(x) =
1

nh

n∑
i=1

I(x− h/2 < Xi ≤ x + h/2) =
1

nh

n∑
i=1

I(|Xi − x

h
| ≤ 1

2
)

We have

p̂n(x) =
1

nh

n∑
i=1

K(
Xi − x

h
)

where

K(u) = I(−1/2 < u ≤ 1/2)

called rectangular kernel.

Figure 2:
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Properties of K:
�

K = 1 
�

p̂n = 1.
And according to Rosenblatt's theorem

p̂n(x) → p(x),∀x in probability

This rectangular kernel can be generalized to other kernels:

Kernel density estimator (Parzen, 1962) We call kernel density estimator
(or Parzen-Rosenblatt estimator) a nonparametric estimator of the form

p̂n(x) =
1

nh

n∑
i=1

K(
Xi − x

h
)

where h > 0 is called BANDWIDTH and K : R → R is any function such
that
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�
|K| < ∞,

�
K = 1

and K is called KERNEL.
(h, K) are the two parameters of this esimator.

Examples of kernels:

• Rectangular: K(u) = I(|u| ≤ 1/2) (�gure 2)

• Triangular: K(u) = (1− |u|)+ (�gure 3)

• Epanechnikov: K(u) = 3
4 (1− u2)+ (�gure 4)

• Gaussian: K(u) = 1√
2π

exp(−u2

2 ) (�gure 5)

Figure 3:
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E�ect of bandwith The following �gures are histogram with same and kernel
density estimators with di�erent h.

Gaussian kernel plot of z 7→ 1
hK( z

h )
For z = Xi − x = 1
for exmaple: for h = 1, 1/2, and 1/3, 1

hK(Xi−x
h ) = 1

hK( 1
h ) = 0.24, 0.11, and 0.013

respectively. (See the following �gures for h = 1, 1/2, 1/3)

Desirable properties of a kernel We typically want (but not necessary):
K(u) ≥ 0, and K(u) = K(−u)

See Silverman (1986): Density estimation for statistics and data analysis.
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Figure 4:
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Multivariate kernel density estimator Each observation Xi = (Xi1, . . .,Xid) ∈
Rd, i = 1,. . .,n with density p(•) on Rd.

Product kernel K : Rd 7→ R,

K(u) =
d∏

j=1

K(uj), u = (u1, . . . , ud)

where K is a kernel on R.
Multivariate kernel density estimator

p̂n(x) =
1

nhd

n∑
i=1

K(
Xi − x

h
)

Curse of dimensionality Assume n = 1000, d = 10 and the rectangular
kernel K(u) = I(|u| ≤ .5), then the multivariate kernel is

K(u) =
d∏

j=1

K(uj) = I(u ∈ [−0.5, 0.5]d)

Say we want to estimate p(0). How many points (in average) fall in the
window when X has uniform distribution on [0, 1]d?

We get

E[
n∑

i=1

I(Xi ∈ window )] = nP(X ∈ window ) = nhd

Assume that h = 0.5 (which is already very large), we obtain:
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Figure 5:
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Figure 6: X
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E# = 1000 • 2−10 =
1000
1024

< 1

not even one in average.

3 Nonparametric regression estimation

3.1 Conditional density

Let (X, Y ) be such that

f(x) = E[Y |X = x]

observations: n i.i.d copies of (X, Y ) : (X1, Y1),. . . ,(Xn, Yn)
X1,. . . ,Xnare called design or e�ects.
Two types: random design vs. �xed design (typically Xi = i/n).
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Figure 7:
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Figure 8:
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Example: motorcycle data A sensor is placed on the helmet of a motorcy-
clist. We measure the acceleration at di�erent times of a crash. The second and
the third �gure are �tting linear regression by least squares and nonparamteric
estimation respectively.

Assume random design and that (X,Y )has joint density p(x, y).
Regression function

f(x) = E[Y |X = x] =
�

yp(y|x)dy =
�

yp(x, y)dy�
p(x, y)dy

3.2 Nadaraya-Watson estimator

We can use bivariate kernel density estimator

p̂n(x, y) =
1

nh2

n∑
i=1

K(
Xi − x

h
)K(

Yi − y

h
)

Replae p(x, y) by p̂n(x, y), we obtain

f̂n(x) =
�

yp̂n(x, y)dy�
p̂n(x, y)dy
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Nadaraya-Watson estimator (proposed independently by Nadaraya
(1964) and Watson (1964))

f̂NW
n (x) =

∑n
i=1 YiK(Xi−x

h )∑n
i=1 K(Xi−x

h )

if denominator 6= 0 and 0 otherwise.
Assume that

�
K = 1 and

�
uK(u)du = 0. then

f̂NW
n (x) = f̂n(x) =

�
yp̂n(x, y)dy�
p̂n(x, y)dy

3.3 Local polynomial estimator

Constant estimator Assume �rst that we have the following idea: �nd the
best constant approximation to the data, which corresponds to �tting the best
line with slope=0. We solve least squares: minc

1
n

∑n
i=1(Yi − c)2 and obtain c.

Locally constant estimator It is a bad idea to assume that accel is constant
over time. But locally it is approximately true because the function is smooth.

For a given point x, to estimate f(x), we downweight the Xi's that are far
from x using a kernel

Local criterion

min
c

1
n

n∑
i=1

(Yi − c)2K(
Xi − x

h
)

f̂(x) = c(x) is the locally constant estimator.
Remark: h → 0 : all points are far away. h →∞: all points are at the same

distance (back to constant estimator).
Fact: the locally constant estimator is the Nadaraya-Watson estimator.

Locally linear estimator We localize the least squares criterion for linear
regression:

min
a,b

1
n

n∑
i=1

(Yi − aXi − b)2K(
Xi − x

h
)

f̂(x) = b(x) is the locally linear estimator.

Locally polynomial estimator Even further, given p ≥ 0:

min
a,b

1
n

n∑
i=1

(Yi − (a0 + a1Xi + . . . + apX
p
i ))2K(

Xi − x

h
)

f̂(x) = a0(x) is the locally polynomial estimator.

8



Local vs Global methods The above methods are local in the sense that
for a given x, you can compute f̂(x). To be opposed to global methods that

compute f̂(x) for all x at once. Each method has its + and -.

3.4 Projection methods

Basis of functions Assume that the design is random with uniform distribu-
tion.

Just like in linear algebra, there are bases of vectors, there exists bases of
functions. They are typically in�nite (in�nite dimention).

Assume that ϕ1, ϕ2, . . . , ϕnis such a bsis. In particular, we can consider the
representation of f in this basis:

f(x) =
∞∑

j=1

αjϕj(x)

Note that the αj 's do not depend on x (global).

Projection estimator Given the basis, it is equivalent to estimate the αj 's :

f̂(x) =
N∑

j=1

α̂jϕj(x)

We basically estimate αjby 0 for j ≥ N + 1. This makes sense if we assume
that αj ↘ 0 fast. This is the case for smooth functions if the basis is well
chosen.

Such bases include: Fourier (trigonometric) basis, wavelet bases, Polynomial
bases (Legendre, Hermitte, . . . ).

Regardless of the basis (Fourier or not), the αj 's are called Fourier coe�-
cients.

How do we compute the estimators α̂j? By the de�nition of the Fourier
coe�cient, we have

αj =
�

f(x)ϕj(x)dx = E[Y ϕ(X)]

this is because the design has uniform distribution.
To estimate, E 1

n

∑n
i=1, so we obtain

α̂j =
1
n

n∑
i=1

Yiϕ(Xi)

The parameter N plays the same role as h and has to be chosen carefully:
large N leads to undersmoothing and small N leads to oversmoothing.
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