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1 What is Nonparametric Estimation?

1.1 Parametric Estimation: estimate parameters in R¥
Examples:
1. X1 14.d ~Nyg(p,X) Estimating p or ¥ is a parametric problem.

2. Y; = XT3+ oe;Esimating 3 or o is a parametric problem.

1.2 Noparametric Esimation: estimate infinite dimensional
parameters, typically functions.

Examples:

1. X1.,(X; € RFfori = 1 : n) i.i.d ~probability density function p. Esti-
mating p :R¥— R is a nonparametric problem.

2. Y; = f(X;) + o¢;Esimating f :RF— R is a nonparametric problem.

2 Nonparametric Density Estimation

2.1 The histogram

X1:pid.d with density p(e) on [0,1]. Let By.,be a partition of [0,1] called bins.
Assume that all bins are intervals with length h. Estimate p by a constant value
on each bin: for z€ By,

) = e jp(rv)dw;LIP’(XGBj)=f1L1E[H(XGBj)]

. 1 n
To estimate, £ ~~- 37" |, so here

n

. 1 n;
pz) = *hZH(Xvi € Bj) = TT;z’ T € B

nn <
=1
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Figure 1:

where n;is the number of ovservations in bin B;. And full piecewise constant

estimator is

pula) =Y iz € By)

Jj=1

3

called HISTOGRAM.

2.2 Kernel density estimator
Let F'(e)be the cdf of the sample, then
F(z) =P(X <z) =E[I(X < z)]
To estimate, E ~»< 3" | so we obtain the estimator
Ey( )—1§n:}1(x.< )
n\T) = n L i ST

called Empirical CDF.
According to Glivenko-Cantelli’s theorem

sup | E, (x) — F(z)] — 0,n — o0, a.s.

From F' to p:
dF(z) F(zx+h/2)— F(x—h/2)

p(z) = p W

for small A > 0.
And this yields estimator (Rosenblatt, 1956)

Ey(z+h/2) — Fy(z — h/2)
h

pn(l‘) =

and its generic form

histogram with small h




n

R 1 Il &, Xi—x, 1
pn(x):%Zﬁ(x—h/2<XiSx—i—lL/Q):%Z]IU —1<3)
i=1 =1

2
We have

n

_1}12_:

where

K(u) =1(-1/2 < u < 1/2)

called rectangular kernel.
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Figure 2:

Properties of K: [ K =1~ [p, = 1.
And according to Rosenblatt’s theorem

Pn(x) — p(x), Vo in probability

This rectangular kernel can be generalized to other kernels:

Kernel density estimator (Parzen, 1962) We call kernel density estimator
(or Parzen-Rosenblatt estimator) a nonparametric estimator of the form

bn(7) = — Z

where h > 0 is called BANDWIDTH and K : R — R is any function such
that




/|K\<oo,/K:1

and K is called KERNEL.
(h, K) are the two parameters of this esimator.

Examples of kernels:
e Rectangular: K (u) = I(Ju| < 1/2) (figure 2)
e Triangular: K(u) = (1 — |ul)+ (figure 3)
e Epanechnikov: K(u) = 3(1 — u?) (figure 4)

o Gaussian: K(u) = - exp(—%") (figure 5)
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Figure 3:

Effect of bandwith The following figures are histogram with same and kernel
density estimators with different h.

Gaussian kernel plot of z — 3+ K(%)

Forz=X,—xz=1

for exmaple: for h = 1,1/2,and 1/3, + K(X=%) = 1 K(4) = 0.24, 0.11,and 0.013
respectively. (See the following figures for h = 1,1/2,1/3)

Desirable properties of a kernel We typically want (but not necessary):
K(u) >0, and K(u) = K(—u)
See Silverman (1986): Density estimation for statistics and data analysis.
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Multivariate kernel density estimator FEach observation X; = (X;1,...,Xiq) €

R?, i =1,...,n with density p(e) on R
Product kernel K : R? — R,

d
K(u) = H K(u;), u=(u,..., uq)

where K is a kernel on R.
Multivariate kernel density estimator

R 1 - Xz — X
Pn() = nhd ZK(T)
i=1

Curse of dimensionality Assume n = 1000, d = 10 and the rectangular
kernel K (u) = I(|u| < .5), then the multivariate kernel is

d
K(u) = [ [ K(u;) =I(u € [-0.5,0.5]")

Say we want to estimate p(0). How many points (in average) fall in the
window when X has uniform distribution on [0, 1]4?
We get

E[> I(X; € window )] = nP(X € window ) = nh?

i=1

Assume that h = 0.5 (which is already very large), we obtain:

1.0

15
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Figure 5:
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1000
— —10 _
E# = 1000 e 2 = 1024

not even one in average.

3 Nonparametric regression estimation

3.1 Conditional density
Let (X,Y) be such that

J(x) = EY|X = ]

observations: n i.i.d copies of (X,Y) : (X1,Y1),... ,(Xn,Yn)
X1,... ,Xare called design or effects.
Two types: random design vs. fixed design (typically X; = i/n).
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Figure &:

Example: motorcycle data A sensor is placed on the helmet of a motorcy-
clist. We measure the acceleration at different times of a crash. The second and
the third figure are fitting linear regression by least squares and nonparamteric
estimation respectively.

Assume random design and that (X,Y)has joint density p(z,y).

Regression function

) = EWIX =] = [ uplylaray = S0

3.2 Nadaraya-Watson estimator

We can use bivariate kernel density estimator

. 1 Xi—z, . Yi—y
p"(x’y)_W;K( A )K( h )

Replae p(z,y) by pn(z,y), we obtain

P i) = S ybn(x,y)dy
fnl@) = [ bn(2,y)dy



Nadaraya-Watson estimator (proposed independently by Nadaraya
(1964) and Watson (1964))

_ YL YK (KE)
S K (557

if denominator # 0 and 0 otherwise.
Assume that [ K =1 and [uK (u)du = 0. then

£ ()

ENW () () J YPn(@:y)dy
o () = fu(@) Thn(@ 0)dy

3.3 Local polynomial estimator

Constant estimator Assume first that we have the following idea: find the
best constant approximation to the data, which corresponds to fitting the best
line with slope=0. We solve least squares: min. = > | (Y; — ¢)? and obtain c.

Locally constant estimator It is a bad idea to assume that accel is constant
over time. But locally it is approximately true because the function is smooth.
For a given point x, to estimate f(z), we downweight the X;’s that are far
from z using a kernel
Local criterion

min = c)QK(Xi}; 7

cn
i=1

f(x) = ¢(z) is the locally constant estimator.

Remark: h — 0 : all points are far away. h — oo: all points are at the same
distance (back to constant estimator).

Fact: the locally constant estimator is the Nadaraya-Watson estimator.

Locally linear estimator We localize the least squares criterion for linear
regression:

1 & X, —x
in— Y (V; —aX; —b)*K(—
Ig}gln;( a JPE(=5—)

f(x) = b(z) is the locally linear estimator.

Locally polynomial estimator Even further, given p > O:

n

1
in — Y, — X;+... XP)Y)VK
Ig};ln;(, (a0 + a1 X + ...+ a, X)) 2K (

Xifl‘
h )

f(x) = ap(x) is the locally polynomial estimator.



Local vs Global methods The above methods are local in the sense that
for a given x, you can compute f(x). To be opposed to global methods that
compute f(z) for all x at once. Each method has its + and -.

3.4 Projection methods

Basis of functions Assume that the design is random with uniform distribu-
tion.

Just like in linear algebra, there are bases of vectors, there exists bases of
functions. They are typically infinite (infinite dimention).

Assume that 71, s, ..., p,is such a bsis. In particular, we can consider the
representation of f in this basis:

fl@) =" ajpi(x)
j=1
Note that the a;’s do not depend on x (global).

Projection estimator Given the basis, it is equivalent to estimate the «;’s :

. N
f(z) = ng‘@j(w)

We basically estimate o ;by 0 for j > N + 1. This makes sense if we assume
that a; ™\, 0 fast. This is the case for smooth functions if the basis is well
chosen.

Such bases include: Fourier (trigonometric) basis, wavelet bases, Polynomial
bases (Legendre, Hermitte, ... ).

Regardless of the basis (Fourier or not), the «;’s are called Fourier coeffi-
cients.

How do we compute the estimators ¢;7 By the definition of the Fourier
coeflicient, we have

o = / f(@)p;(x)dz = E[Y p(X)

this is because the design has uniform distribution.
To estimate, E ~1 3" | so we obtain

A 1 n
&= > Yip(X))
1=1

The parameter N plays the same role as h and has to be chosen carefully:
large N leads to undersmoothing and small N leads to oversmoothing.



