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1 Overview

• Goal: To build a Markov chain whose stationary distribution is p(x), where p(x) is the target distribu-
tion. This can be thought of as approximating the target distribution with an empirical distribution.

• The goal can be thought of as obtaining independent samples from p(x) by adjusting the empirical
distribution to match the target distribution. To achieve this we will generate sample from a Markov
chain for a “long time” (in relation to the “burn-in”) and collect samples at some lag. Intuitively, the
lag depends on the “time/number of iterations” before the empirical distribution reaches the stationary
distribution, and thus will vary depending on the initial position.

The question that can be asked is when does the Markov chain begin to obtain samples from the stationary
distribution? First, a short digression.

2 Definitions and Theorems

First-Order Markov Chains A First-Order Markov chain is a series of random variables, X1, . . . , Xm, Xm+1,
for which the influence of the values of X1, . . . , Xm on the distribution of Xm+1 depends entirely on Xm (i.e.
first-order Markov assumption). Formally,

p(Xm+1|X1, X2, . . . , Xm) = p(Xm+1|Xm) (1)

A Markov chain is specified by:

• po(X) — the initial probabilities of the various states.

• The transition probabilities Tm(xm, xm+1) where,

Tm(xm, xm+1) , p(Xm+1|Xm) (2)

where Tm is the probability for state xm+1 at time m + 1 to follow state xm at time m. Note: The
latent variables of Hidden Markov Models seen in earlier lectures is a Markov chain.

A Markov chain is homogenous if the transition probabilities are not a function of time —

Tm = T (3)

For simplicity, we assume that X is discrete. Using the transition probabilities, one can find the probability
of state x occurring at time m + 1, denoted pm+1(x), from the corresponding probabilities at time m, as
follows:

pm+1(xm+1) =
∑
xm

pm(xm)p(xm+1|xm) (4)

Recall from HMMs that given the initial probabilities, (4) defines a recursion from which we can calculate
all the marginal probabilities throughout the Markov chain.
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Stationary Distribution A distribution is stationary or ( invariant) with respect to a Markov chain if
each step in the chain leaves the distribution given by the probabilities, p∗(x), unchanged for all time, as
follows:

p∗(x) =
∑
x′

T (x
′
, x)p∗(x

′
) (5)

the marginal over all possible transitions from state x
′

to state x.

In general, a Markov chain can have 0 or more stationary distributions. A finite Markov chain always has
at least one invariant distribution1.

A sufficient condition for stationarity (i.e. implies p∗(x) is a stationary distribution), using notation from
before, is as follows:

p∗(x)T (x, x
′
) = p∗(x)T (x

′
, x) (6)

This is also called the condition of reversibility or detailed balance.

Proof. Let us check stationarity over detailed balance.∑
x′

T (x
′
, x)p∗(x

′
) =

∑
x′

T (x, x
′
)p∗(x) (From (6))

= p∗(x)
∑
x′

T (x
′
, x) (

∑
x′

T (x
′
, x) = 1)

= p∗(x)

It seems logical that in order to achieve our goal of sampling from the target distribution, p(x), we simply
have to arrange a Markov chain such that the stationary distribution will be p(x). However, we need an
additional condition that as m→∞, the probabilities at time m, pm(x)→ p∗(x), regardless of the choice of
initial probabilities po(x). This property relates to the uniqueness of the invariant distribution of the Markov
chain. Moreover, some Markov chains are periodic,meaning they “converge” to a cycle of distributions. In
order to satisfy this condition, called ergodicity, and also determine a bound on the rate of convergence, we
turn to the following theorem:

Fundamental Theorem (From Neal, 1993) If a homogeneous Markov chain on a finite space with tran-
sition probabilities T (x, x′) has p∗(x) as an invariant distribution and

ν = min
x

min
x′:p∗(x′)>0

T (x, x′)

p∗(x′)
> 0 (7)

then the Markov chain is ergodic, i.e. regardless of the initial probabilities, po(x).

lim
n→∞

pn(x) = p∗(x) (8)

A bound on the rate of convergence is given by

|p∗(x)− pn(x)| ≤ (1− ν)n (9)

This theorem can be interpreted in terms of the state space defined by the model. If transition probabilities
allow “escaping” from one state to any other state in the state space of the model, then this theorem
guarantees that a unique stationary distribution will exist. Note, however, that this condition is not necessary
for ergodicity. The proof of the theorem was not covered during lecture and can be found in the reading
material for today’s lecture.

1From Neal(1993), “Probabilistic Inference Using Markov Chain Monte Carlo Methods”
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Computational Effort for Monte Carlo Estimation Recalling that our main goal was to construct a
Markov chain with stationary distribution is p∗(x), our desired target distribution, there are several factors
that need to be considered in terms of the computational needed:

• The amount of computation needed to simulate a transition from one state to another

• The amount of “time” needed for the chain to converge (i.e. the “burn-in”)

• The number of draws need to move from one sample(state) from p∗(x) to another independent sam-
ple(state) from p∗(x)

For all of these factors there is no dominant theoretical solution. In other words, the theory is still “young.”
Discussion of these issues can be found in the reading. For now, let’s put these issues aside and return to
our main goal.

3 The Metropolis-Hastings Algorithm

The idea of the Metropolis algorithm was to draw a sample from some proposal distribution and accept
the sample according to a criterion, which can be random. Hastings (Hastings, 1970) extended the original
Metropolis Algorithm to a more general case.

First, some notation:

• Let the state space of X have K components, X = X1, X2, . . . , XK

– e.g. there are K nodes in a graphical model

• Consider K transition matrices Bk, where each one holds xj fixed for j 6= k.

– Only the k ’th component is changed through a transition from the current state to the next state
by Bk

• To move from the current state at time t, X(t), to the next state at time t+1, X(t+1), iteratively apply
each Bk

– If detailed balance holds for each Bk, then it will also hold for the product of all the Bk.

Algorithm Suppose x is the current state.

1. Select a candidate state, x′ picked at random from the proposal distribution, which may depend on x,
given by the probability Bk(x, x′).

2. Accept the candidate state as the next state x′, with probability A(x, x′), the acceptance function.
Otherwise, reject it and retain the current state as the next state.

This acceptance function is defined as follows:

Ak(x, x′) = min

(
1,
P (x′)Bk(x′, x)

P (x)Bk(x, x′)

)
(10)

where P (X) is our original target distribution. Note that when the Bk satisfy the symmetry condition
Bk(x′, x) = Bk(x, x′), the algorithm becomes the original Metropolis algorithm.

It remains to be verified that detailed balance is satisfied by this acceptance function.

Proof. For the simple case of one Bk. From (10):

P (x)Bk(x, x′)Ak(x, x′) = min (P (x)Bk(x, x′), P (x′)Bk(x′, x))

= min (P (x′)Bk(x′, x), P (x)Bk(x, x′))

= P (x)Bk(x′, x)Ak(x′, x)
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Detailed balance is satisfied. If Bk satisfies detailed balance, then the product of all the Bk’s will also satisfy
detailed balance. Therefore, P (x) is the invariant distribution of the Metropolis-Hastings algorithm.

4 Additional Remarks

The Metropolis-Hastings algorithm can be applied in many different forms to a sample a target distribution.
One way is treating each of the coordinates independently in a “local” algorithm and iteratively apply each
of the Bk or choose a random Bk at every iteration. The local algorithm can be illustrated as shown in
Figure 1a when applied to a target distribution of a multivariate Gaussian, P ∗(X). The proposal distribution
Bk(x, x′) is limited within the state space. The path of samples follow random walk in the state space, with
a tendency to move towards a region with higher probability in the target distribution. Though we are
obtaining individual samples, these samples are very correlated and therefore, depending on the condition,
may converge very slowly towards the target distribution.

An alternative “global” form is to apply the changes to coordinates at the same time according to a pre-
defined proposal distribution, B. This is shown in Figure 1b. In this case, calculating B(Xt, Xt+1) can be
considered applying all Bk. There is a trade-off in this approach as the samples obtained are less correlated
and the exploration of the entire state space may be faster, but there is a possibility that more samples
will be rejected. To retain reasonable rejection rates, smaller steps may need to be taken in the exploration
of the state space compared to the local algorithm. Additional discussion about this issue can be found in
the reading in Section 4.4. Figure 1b also illustrates that if a candidate state is rejected, the current state
becomes the next state.

(a) Local Algorithm (b) Global Algorithm

Figure 1: Operation of local and global algorithm for a multivariate Gaussian

5 Next Time:

Next time we will be covering the Gibbs sampling algorithm!
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