1. Introduction

In this lecture we consider how to model sequential data. Rather than assuming that the data are all independent of each other we assume they come in sequence $X_{1:T} = x_1, x_2, \ldots, x_T$. There are two types of sequential models that are quite similar to each other: Hidden Markov Model (HMM) and Kalman Filter. This lecture focuses on HMM which has many applications including genome modeling and action recognition.

HMMs are a generalization of the finite mixture model (MM) to sequences. In MM, the process of generating IID data involves choosing a

![Diagram representing transitions between mixture components 1, 2, 3 and observed data. The probability of transition is shown on the edges. xs represent data points and x_1 and x_2 are indicated by the yellow and red x respectively.](image)
component according to a distribution $p(z)$, independent of choice of components in other steps, and choosing a data vector from the distribution, $p(x|z)$. In HMM, the mixture component is chosen dependent on the previous component. Each component can be seen as a state, and we augment the basic MM to include a matrix of transition probabilities.

Figure 1 illustrates this difference. The xs are elements of the sequence. Let the yellow x represent x_1 and the red x represent x_2. Then in MM, x_2 is approximately equally likely to belong to component 2 or 3. In HMM, x_2 is more likely to belong to component 2, since x_1 belongs to 1, and the probability of state transition from 1 to 2 is high.

2. Graphical model for HMM

In Figure 2, each of the z_t is a multinomial random variable represented by an indicator vector of size K, whose component i is 1 if the cluster index i (for the clusters associated with data $x_1:T$) is indicated, and 0 if not. For a particular configuration $(z, y) = (z_1, z_2, ..., z_T, x_1, x_2, ..., x_T)$ as shown in Figure 2, the joint probability is given by the product of local conditional probabilities as follows:

\[
p(z_{1:T}, x_{1:T}) = p(z_1) \prod_{t=2}^{T} p(z_t|z_{t-1}) \prod_{t=1}^{T} p(x_t|z_t)
\]

We assume above that the distribution $p(x_t|z_t)$ is independent of t.

2.1. Emission probabilities. For a given state k, there is a set of emission probabilities governing the distribution of y_t, and we represent it by θ_k. For example, θ_k could be a parameter to a multivariate Gaussian or multinomial Poisson. Thus $p(x_t|z_t)$ can be written as:
The parameters of an HMM include the emission probabilities $\hat{\theta}$, the transition matrix \hat{A} and the initial probability distribution $\hat{\pi}$. Given data $x_{1..T}$, we want to estimate these parameters. First we write down the expected complete log likelihood using equations 1 to 4 with respect to the posterior $p(z_{1..T}|x_{1..T})$:

$$
\mathbb{E}[\log p(x_{1..T}, z_{1..T})] = \mathbb{E}[\log \prod_{k=1}^{K} \prod_{t=2}^{T} \prod_{j=1}^{K} \prod_{i=1}^{K} \prod_{k=1}^{K} \prod_{i=1}^{K} \prod_{j=1}^{K} [a_{jk}]^{z_{t-1}^j z_{i}} \prod_{t=1}^{T} \prod_{k=1}^{K} p(x_t|\theta_k)^{z_{t}^k}]$$
\[= \sum_{k=1}^{K} \mathbb{E}[z_t^k] \log \pi_k + \sum_{t=2}^{T} \sum_{j=1}^{K} \sum_{k=1}^{K} \mathbb{E}[z_{t-1}^j z_t^k] \log [a_{jk}] + \sum_{t=1}^{T} \sum_{k=1}^{K} \mathbb{E}[z_t^k] \log p(x_t | \theta_k) \]
of data points in cluster k. The multinomial case where each x_t has exactly one of D fixed, finite outcomes, is as follows:

$$p(x_t|\theta_k) = \prod_{i=1}^{D} \theta_{k,i}^{x_t}$$

(12)

$$\theta_{k,i} = \sum_{t=1}^{T} \mathbb{E}[z_t^k|x_t^i] / \sum_{t=1}^{T} \mathbb{E}[z_t^k]$$

(13)

Now, let us consider how to compute $\mathbb{E}(z_{t-1}, z_t|x_{1..T})$ in the E step. Define $\alpha(z_t)$, $\beta(z_t)$ as follows using a simple application of the Bayes rule, chain rule and conditional independence.

$$\mathbb{E}[z_t|x_{1..T}] = p(z_t|x_{1..T})$$

$$= p(z_t, x_{1..T})/p(x_{1..T})$$

$$= p(x_{1..t}, z_t).p(x_{t+1..T}|z_t)/p(x_{1..T})$$

$$= \alpha(z_t).\beta(z_t)/p(x_{1..T})$$

$\alpha(z_t)$ is the probability of emitting a sequence of outputs $x_{1..t}$ and ending up in state z_t. $\beta(z_t)$ is the probability of emitting a sequence of outputs $x_{t+1..T}$ starting from state z_t.

$$\mathbb{E}[z_{t-1}, z_t|x_{1..T}] = p(z_{t-1}, z_t|x_{1..T})$$

$$= p(x_{1..T}, z_{t-1}, z_t)/p(x_{1..T})$$

$$= p(x_{1..t-1}, z_{t-1}).p(x_{t..T}, z_t|x_{1..t-1}, z_{t-1})/p(x_{1..T})$$

$$= p(x_{1..t-1}, z_{t-1}).p(z_t|z_{t-1}).p(x_{t..T}|z_t, z_{t-1})/p(x_{1..T})$$

$$= p(x_{1..t-1}, z_{t-1}).p(z_t|z_{t-1}).p(x_t|z_t).p(x_{t+1..T}|z_t, z_{t-1})/p(x_{1..T})$$

$$= p(x_{1..t-1}, z_{t-1}).p(z_t|z_{t-1}).p(x_t|z_t).\beta(z_t)/p(x_{1..T})$$

(14)

In the above sequence of equations, step 3 follows from splitting the sequence $x_{1..T}$ into $x_{1..t-1}$ and $x_{t..T}$, and applying Bayes rule. In step 4, we use the independence of z_t from $x_{1..t-1}$ given z_{t-1}, and the independence of $x_{t..T}$ from $x_{1..t-1}$ given z_t. Steps 5 and 6 use the independence of x_t from z_{t-1} and $x_{t+1..T}$ from z_{t-1}, and from each other, given z_t. Note that $p(z_t|z_{t-1})$ is given by $\alpha_{z_t,z_{t-1}}$. In the next lecture, we will consider algorithms to compute $\alpha(z_{t})$ and $\beta(z_{t})$.