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Figure 1 is the graphical model that motivates the following discussion of factor analysis
(FA).

Figure 1:
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In FA, the basic idea is to choose z from some distribution in ¢ dimensions and project it
onto a p-dimensional space and then choose x given the projection. To begin with, we define
the variable distributions.

(z,z) is a joint Gaussian
z ~ N(0, AAT 4 T)
2o ~ N(AT(AAT +0) 71X (1T + ATEAT)

We want to get the MLE of A and ¥, given that we have data, D = {z, })_,.
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Notice that © = Az + €. If we know z, then this is a linear regression. But z is a hidden
variable. So we are going to use the expectation maximization (EM) algorithm. Generally
speaking, this is a way of solving maximization problems in the face of hidden variables. The
EM algorithm for factor analysis is an iterative algorithm with 2 steps:

1. the E-step:

e compute p(z,|z,, A, U®)

e the posterior p(z|z) is defined above
2. The M-step:

o A=Y = (3 Elzpz] |z, AD, GO TS Elzn|z,, AD, WO, )
e UTY = See hook

EM is a way of finding approximate MLE’s in latent variable models. We will be thinking
about these in the rest of the course. Latent variable models posit hidden structure in ob-
served data: clustering, subspace, trees, sequences etc.

One way to think about EM: in the E-step, we will fill in the hidden variables. In the M-step,
we fit parameters to match the filled in variables (akin to taking the MLE estimate in a fully
observed model). So, fill in z and then estimate the parameters. This gets us around having
to integrate out the latent variables.

EM general setting
e 1, = {1...N} observed data

e z, hidden structure
e O are the parameters we are interested in fitting.

e There is no particular graphical model.

What if z were observed? We could find the parameters by taking the max of the log-
likelihood.

0 = arg max log p(x, z|0)

= argmaxlog p(z(2, ;) + log p(=10:)

This function is called the complete log-likelihood. But z is hidden, so we are really after



0 = arg max log p(x|0)

= argmax log ; p(z, 2|0)

Where the hidden variable has been factored out.

Note Jenson’s inequality:
We will have a lower bound logp(z) on Jenson’s inequality. If A € (0,1) and ¢ is convex
then:

Ao(x) + (1= Ne(y) = (M) + (1 = N)(y))

Which generalizes to expectations —
And if ¢ is concave —

Now back to EM:

log p(z logZp x, z]0)
logZp x,z|0) &

q(z)
losE, [ p(z, 49}

[EZ|9:|

~—

>, log
= E, log p(z, z|0) — E, log ¢(2)
= Q(6;9)

This is the EM objective function. The EM algorithm will optimize the objective function.
The EM is a coordinate ascent on Q:

E 3C](t+1) = arg max Q(e(t)a Q>
q

M 04 = arg max Q(8, ¢)



Holding @ fixed, the optimal ¢(z) is p(z|z, 6®).
—Zp z|z) log p(, 2) Zp z|z) log p(z|x)
—Zp z|z) log p(z|z) +Zp z|z) log p(z|z) log p(x Zp z|z) log p(z|z)

—Zp z|z) log p(x

= logp( )

M-step:
o+ — arg max B, log p(x, 2]0)

= argmax E,logp(z|0) + E, log p(x|z, 6)

Which is the expected complete log-likelihood.

Mixture modeling

e E-step: estimate p(cluster|datapoint)

e M-step: reweight the data by p( |x) and do MLE.



