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Figure 1 is the graphical model that motivates the following discussion of factor analysis
(FA).
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In FA, the basic idea is to choose z from some distribution in q dimensions and project it
onto a p-dimensional space and then choose x given the projection. To begin with, we define
the variable distributions.

〈z, x〉 is a joint Gaussian

x ∼ N (0, ΛΛT + Ψ)

z|x ∼ N (ΛT (ΛΛT + Ψ)−1X, (I + ΛT ΨΛT )−1)

We want to get the MLE of Λ and Ψ, given that we have data, D = {xn}N
n=1.

1



Notice that x = Λz + ε. If we know z, then this is a linear regression. But z is a hidden
variable. So we are going to use the expectation maximization (EM) algorithm. Generally
speaking, this is a way of solving maximization problems in the face of hidden variables. The
EM algorithm for factor analysis is an iterative algorithm with 2 steps:

1. the E-step:

• compute p(zn|xn, Λ
(t), Ψ(t))

• the posterior p(z|x) is defined above

2. The M-step:

• Λ(t=1) = (
∑

n E[znz
T
n |xn, Λ(t), Ψ(t)])−1(

∑
n E[zn|xn, Λ

(t), Ψ(t)]T xn)

• Ψ(t+1) = See book

EM is a way of finding approximate MLE’s in latent variable models. We will be thinking
about these in the rest of the course. Latent variable models posit hidden structure in ob-
served data: clustering, subspace, trees, sequences etc.

One way to think about EM: in the E-step, we will fill in the hidden variables. In the M-step,
we fit parameters to match the filled in variables (akin to taking the MLE estimate in a fully
observed model). So, fill in z and then estimate the parameters. This gets us around having
to integrate out the latent variables.

EM general setting

• xn = {1....N} observed data

• zn hidden structure

• θ are the parameters we are interested in fitting.

• There is no particular graphical model.

What if z were observed? We could find the parameters by taking the max of the log-
likelihood.

θ̂ = arg max
θ

log p(x, z|θ)
= arg max

θ
log p(x|z, θx) + log p(z|θz)

This function is called the complete log-likelihood. But z is hidden, so we are really after
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θ̂ = arg max
θ

log p(x|θ)
= arg max

θ
log

∑
z

p(x, z|θ)

Where the hidden variable has been factored out.

Note Jenson’s inequality :
We will have a lower bound log p(x) on Jenson’s inequality. If λ ∈ (0, 1) and ϕ is convex
then:

λϕ(x) + (1− λ)ϕ(y) ≥ ϕ(λ(x) + (1− λ)(y))

Which generalizes to expectations –

E[ϕ(x)] ≥ ϕ(E[x])

And if ϕ is concave –

E[ϕ(x)] ≤ ϕ(E[x])

Now back to EM:

log p(x|θ) = log
∑

z

p(x, z|θ)

= log
∑

z

p(x, z|θ)q(z)

q(z)

= log Eq

[
p(x, z|θ)

q(z)

]

≥ Eq

[
log

p(x, z|θ)
q(z)

]

= Eq log p(x, z|θ)− Eq log q(z)

≡ Q(θ; q)

This is the EM objective function. The EM algorithm will optimize the objective function.
The EM is a coordinate ascent on Q:

E :q(t+1) = arg max
q
Q(θ(t), q)

M :θ(t+1) = arg max
θ
Q(θ, q(t+1))
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Holding θ fixed, the optimal q(z) is p(z|x, θ(t)).

=
∑

z

p(z|x) log p(x, z)−
∑

z

p(z|x) log p(z|x)

=
∑

z

p(z|x) log p(z|x) +
∑

z

p(z|x) log p(z|x) log p(x)−
∑

z

p(z|x) log p(z|x)

=
∑

z

p(z|x) log p(x)

= log p(x)

M-step:

θ(t+1) = arg max
θ

Eq log p(x, z|θ)
= arg max

θ
Eq log p(z|θ) + Eq log p(x|z, θ)

Which is the expected complete log-likelihood.

Mixture modeling

• E-step: estimate p(cluster|datapoint)

• M-step: reweight the data by p( |x) and do MLE.
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