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1 Generalized Linear Model, cont’d

Schematically, GLM is:

β>xn
f−→ E [Yn|Xn] = µn

ψ−→ ηn

And, corresponding form of conditional probability density is:

P [Yn|Xn] = h (Yn) exp
(
ψ
(
f
(
β>xn

)))
· y − a

(
ψ
(
f
(
β>xn

)))
= h (Yn) exp (ψ (µn)) · y − a (ψ (µn))

= h (Yn) exp (ηn) · y − a (ηn)

When using canonical link function, the inverse link function f is de-

fined such that ηn = β>xn, which results in f
4
= ψ−1. This sounds like

an arbitrary condition, but in the case of logistic regression, this happens
naturally.

Logistic regression and probit regression:

Logistic Probit

f logit function i.e. log
(

β>x
1−β>x

)
tail prob. of N (0, 1) i.e. 1− Φ

(
β>x

)
map ψ ◦ f : R 7→ [0, 1]

ψ f = ψ−1 when Y ∼ Bernoulli ψ more complicated

Softmax regression is a multivariate extension of logistic:

Logistic Softmax

response Y Y ∈ {0, 1} Y ∈ {1, 2, . . . ,K}
ψ logistic function softmax function
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In summary, GLM gives

• Flexibility: because a user can do model selection by choosing f (and
its domain, codomain as well).

• Robustness: because ψ is determined from the choice of probabilistic
model, which is from a well-defined “exponential” family of models.

2 Fitting GLM with Maximum Likelihood setup

The idea is:

If given β̂MLE , we predict Y with probability: P
[
Ŷ |X

]
= f

(
β̂MLE , X

)
Denote:

• D = {(xn, yn)} (n = 1 . . . N)

• ηn := ψ
(
f
(
β>xn

))
: per-observation natural parameter

• µn := f
(
β>xn

)
: per-observation mean parameter

• l (β;D) : log-likelihood of data D given β, such that:

l (β;D) := log

N∏
n=1

h (yn) exp
(
η>n yn − a (ηn)

)
=

N∑
n=1

log (h (yn)) +
N∑
n=1

(
η>n yn − a (ηn)

)
Now, finding MLE requires the following steps:

∂l

∂β
=

N∑
n=1

∂l

∂ηn

∂ηn
∂β

=
N∑
n=1

(
yn − a′ (ηn)

) ∂ηn
∂β

(1)

Note the following two equalities that can be applied to Equation 1:

• ∂ηn
∂β = ψ′

(
f
(
β>xn

))
f ′
(
β>xn

)
from definition of ηn

• a′ (ηn) = µn from exponential family’s property
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From this viewpoint, equation 1 can be seem as a weighted sum of gradients
for each observation xn, where each weight is the difference of observed
response variable yn and its mean µn.

When f is the canonical response function (i.e. f = ψ−1), then ηn =
β>xn. Using this, equation 1 can be further simplified:

∇βl (β;D) =
∂

∂β

N∑
n=1

((
β>xn

)>
yn − a

(
β>xn

))

=
N∑
n=1

(
x>n yn − a′

(
β>xn

)
xn

)
=

N∑
n=1

(yn − µn)xn

Now, this can be seen as an iterative update rule, where yn−µn is the signed
residual for each observation and xn sets the direction to update β using the
observation.

3 Dimension Reduction

N

Xn Yn beta

Figure 1: A graphical model for dimensionality reduction

Note that now we do not see Xn, but sees Yn. Idea is to guess simpler
distribution of data (Xn in Figure 1) from the observed data (Yn in Figure
1). The simpler distribution should preserve the original distribution to
some degree (in statistical sense).

Now let’s use conventional notation that we observe Xn. To reduce
the dimension of the data means to transform (x1, . . . , xp) into (x1, . . . , xq)
where q < p. For example, clustering data into k numbers of cluser trans-
forms each observed data vector Xn into its cluster assignment (e.g. one of
k integers), where each cluster has a probabilistic model which uses β as its
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parameter. We focus only on linear cases, and we limit our projection space
to Rq.

3.1 Principal Component Analysis (PCA) & Factor Analysis
(FA)

Dating back to Pearson (1901) and Hotelling (1933), there were many re-
invention of this technique. Idea is to project the original data onto a lower
dimensional manifold in the original data space. The free parameters de-
fine the manifold, and we present three different perspectives on how the
objective is formulated.

1. Maximize the variance of the projection along each of the q components
(Hotelling 1933). This criterion has identifiability issue (that there can
be more than one subspace that satisfies the criterion), so in practice,
the original data is normalized to have intercept at 0.

2. Minimize the reconstruction error (Pearson 1901). In other words,
minimize the distance in the original space between the original data
and its reconstruction from the projection values.

3. PCA and FA solutions are the MLE’s of corresponding probabilistic
model (Bishop 1996, Rowes 1998, Schapire 2001). This is discussed
more in detail below:

Let’s define a probabilistic model as follows, where ~Z is q−dimensional
random variable, and p-dimensional random variable ~X corresponds to the
observed data:

• ~Z ∼ Nq

(
~0, I
)

. Nq is q-dimensional multivariate Gaussian distribu-

tion, and I is a diagonal identity matrix.

• ~X ∼ Np (~µ+ ΛZ,Σ). When Σ = Iσ2, then this corresponds to PCA
(where all components have the same variance); when Σ is set to have
different variances for each component, then this corresponds to FA.

In this setup, the followings are true:

• Projection of data Xn is equivalent to E [Zn|Xn].

• Fitting Λ with MLE is equivalent to finding a subspace that satisfies
criteria 1 and 2.

• MLE Λ can be found using EM algorithm (this will be covered in next
class).
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