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1 The Exponential Family
In Probability Theory and Statistics it is very usual to consider certain clas-
sical probability distributions like Gaussian Distribution, Poisson Distribu-
tions, Bernoulli Distributions and many more. Although these families of
distributions are very often treated separately one can view them in a uni-
fied context, merely as examples of distributions in the exponential family.
We say that a parameterized family of distributions (like the Gaussian or the
Poisson families) is in the exponential family if, parameterized with a vec-
tor η (called the natural parameters), its probability distribution (or density
function) p(X|η) can be written as

p(x|η) = eηT t(x)−a(η)h(x),

for some functions a, t and h1. Since p(X|η) is a probability distribution it
has to integrate to 1 so

1 =

∫
p(x|η)dx =

∫
eηT t(x)−a(η)h(x)dx.
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1h does not need to be a function, but for now let’s not worry about that, we will
explain why later, with examples.
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Then
a(η) = log

∫
eηT t(x)h(x)dx.

For this reason a(η) is called the log normalizer.
Before giving a more detailed discussion about the exponential family

we’ll see examples of distributions that belong to it.

1.1 Gaussian Distribution

The Gaussian distribution, parameterized by its mean µ and variance σ2, as
its density function given by

p(x|µ, σ2) =
1√

2πσ2
e−

1
2σ2 (x−µ)2

With algebraic manipulation one gets,

p(x|µ, σ2) = 1√
2π
e− log σ+ µ

σ2 x− 1
2σ2 x2− µ2

2σ2

= 1√
2π
e
( µ

σ2 ,− 1
2σ2 )

T
(x,x2)−

(
log σ+ µ2

2σ2

)
.

Therefore, setting
η =

(
µ
σ2 ,− 1

2σ2

)
t(x) = (x, x2)

a(η) = log σ + µ2

2σ2

= − log(−2η2)− η2
1

4η2

h(x) = 1√
2π
,

gives us the Gaussian distribution as a element of the exponential family.

1.2 Poisson Distribution

The Poisson distribution on the non-negative integers, parameterized by its
intensity λ is given as

p(x|λ) =
1

x!
λxe−λ.

Using algebraic manipulation one gets,

p(x|λ) =
1

x!
elog(λ)x−λ.
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Therefore, setting

η = log λ
t(x) = x
a(η) = λ

= eη

h(x) = 1
x!
, for non-negative x.

gives us the Poisson distribution as a element of the exponential family.

Remark 1 Note that in this example h cannot be considered a function be-
cause, as the measure we want it to represent (let’s call it ν) gives posi-
tive probability to some integers x, it is not absolutely continuous with re-
spect to the Lebesgue measure on Rn, so there exists no function such that
dν(x) = h(x)d(x). However this can be achieved if h is a distribution (a
generalization of a function in some sense). Another way of making the
statements rigorous would be to adapt the definition of exponential family
and instead of considering h, consider the measure itself. For background on
measure theory we recommend reading [1].

1.3 Bernoulli Distribution

The Bernoulli distribution on 0, 1, parameterized by its mean π is given as

p(x|π) = πx(1− π)1−x.

Using algebraic manipulation one gets,

p(x|π) = elog(π)x+log(1−π)(1−x)

= e(log π−log(1−π))x−(− log(1−π)).

Therefore, setting
η = log π − log(1− π)

t(x) = x
a(η) = − log(1− π)

= − log
(
1− eη

1+eη

)
= log (1 + eη)

h(x) = 1, for x ∈ {0, 1}.
gives us the Bernoulli distribution as a element of the exponential family.
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Remark 2 If we adopt a different perspective and consider a probability dis-
tribution X (not a family of parameterized distributions) with a density func-
tion d(x), then we can always write it in the exponential family simply by
choosing h(x) = d(x), t(x) = 0 and a(η)=0. However, this is cheating in
some sense because we are interested in estimating parameters of distribu-
tions and in the case described there are no parameters to be estimated. To
be more precise we should only consider the setting where we are interested
in a conditional distribution over parameters p(X|η), and in the particular
case (and always the case in practical applications) when different values of
the parameters η correspond to different conditional probability distributions.
When this is the case then the definition of being in the exponential family is
far more restrictive since it very accurately describes the way the probability
distribution varies with the parameters η.

2 Moments of the Exponential Family
It turns out that there exists a remarkable relation between the log normal-
ization function a and the moments of the sufficient statistics t(x), we will
now derive that relation.

a′(η) = d
dη

(
log
∫
eηT t(x)h(x)dx

)
=

d
dη

∫
eηT t(x)h(x)dx∫

eηT t(x)h(x)dx

=
∫

t(x)eηT t(x)h(x)dx∫
eηT t(x)h(x)dx

=
∫

t(x)eηT t(x)h(x)dx

ea(η)

=
∫
t(x)eηT t(x)−a(η)h(x)dx

= E[t(X)].

One can also prove that,

a′′(η) = E[t(X)2]− E[t(X)]2 = Var[t(X)].

Remark 3 There is a “high level” reason for this relation between the deriva-
tives of a and the moments of t(X), we will try to make a brief exposition of
it:
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Let f be the moment generating function2 of t(X) (it is given as f(α) =
E[eαt(X)]). Then

f(α) = E(eαt(X))

=
∫
eαt(x)eηt(x)−a(η)h(x)dx

=
∫
e(α+η)t(x)−a(η)h(x)dx

= e−a(η)
∫
e(α+η)t(x)h(x)dx

= e−a(η)ea(α+η)

= ea(α+η)−a(η)

Also, the cumulants3 generating function g is the log of the moments
generating function, therefore

g(α) = log f(α) = a(α+ η)− a(η)

The cumulants can be recovered from g by differentiation at zero, the kth

cumulant is equal to g(k)(0). Also, the first cumulant is the mean and the
second is the variance. Thus,

{
E[t(X)] = d

dα
g(α)|α=0 = d

dα
a(α+ η)− a(η)|α=0 = a′(η)

Var[t(X)] = d2

dα2 g(α)|α=0 = d2

dα2a(α+ η)− a(η)|α=0 = a′′(η)

Example 1 Let’s compute the mean of the Bernoulli distribution using this
method. In the Bernoulli setting we have a(η) = log(1 + eη) so,

a′(η) =
eη

1 + eη
=

1

1 + e−η
= π = E(X) = 1p(X = 1)+0p(X = 0) = p(X = 1).

Generally, we can also parameterize distributions in the exponential fam-
ily with the moment parameters µ given by µ = E[t(X)]. We then have an
application

µ =
da(η)

dη
,

2In one dimension one can think of a generating function of a sequence an as the series∑
anxn, if t(X) is high dimensional then one thinks about componentwise.
3Cumulants are a set of quantities analogous to moments, they are related to moments

but are not the same.
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that maps the natural parameters to the moment parameters. Since a(η) is a
convex function (we will not prove this here) then its derivative is injective,
so we can define a inverse of this application, an application ψ mapping the
moment parameters to the natural parameters,

η = ψ(µ).

3 Sufficiency
In this section we will try to give a definition of sufficient statistic and show
that t(x) above is actually a sufficient statistic in the sense of this definition.

First of all, a statistic of a certain random variable X is a function t(X)
of the random variable, more precisely it is a new random variable Y that
can be written as a composition of X with some other function. Let’s now
present a definition of sufficient statistic for a parameterized distribution.

Definition 1 (Sufficient statistics) Let X be a probability distribution pa-
rameterized by η. We say that a statistic t(X) is sufficient if E(t(X)) gives
all the information in X regarding η, i.e.

p(X|E(t(X)), η) = p(X|E(t(X))).

In other words, X and η are independent conditioned on E(t(X)), i.e.

η⊥X|E(t(X)).

A remarkable property of the sufficient statistics is that estimating its
expected value is enough to estimate the parameters. This means that, if
one was data points X1, ..., Xn, then, in order to estimate the parameter
η, one only needs the information in E(t(X)) (because X is independent
of η conditioned on it), so one only needs to estimate E(t(X)) and this is
achieved by 1

N

∑N
n=1 t(Xn). This fact motivates a, data focused perspective,

definition of sufficient statistics simply as the statistics t(X) such that when
you have data Xn, then the empirical mean of t(X), 1

N

∑N
n=1 t(Xn), gives

you all the information in (X1, ..., XN) regarding the parameter η. This
perspective is also usual (see e.g. [2]). We will see in the next section that
only 1

N

∑N
n=1 t(Xn) will be used in the maximum likelihood estimation for

the exponencial family.
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Remark 4 One can prove that the sufficient statistic t(X) in the definition
of the Exponential Family are actually sufficient in terms of the above defini-
tion. This can be easily done by noticing that, since E(t(X)) = a′(η) and a(η)
is a convex function, then the application ψ(E(t(X))) = η is well defined.

4 Maximum Likelihood Estimation for the Ex-
ponential Family

Let’s now consider the Maximum Likelihood Estimation for a parameterized
family of distribution in the Exponential Family.

We begin by calculating the likelihood function,

p(x1:N |η) = ΠN
n=1

(
h(xn)eηT t(xn)−a(η)

)
=

(
ΠN

n=1h(xn)
)
eηT

∑N
n=1 t(xn)−Na(η).

Remark 5 Notice that, as the discussion above predicted, all we need, to
determine the MLE of η, is the sum of the sufficient statistics. That means
that, e. g., if we were estimating a Gaussian distribution that we would only
need

∑
Xn and

∑
X2

n and if we wanted to estimate a Bernoulli distribution
then we would only need

∑
Xn.

The log-likelihood function is then given by

l = log p(x1:N |η) =
N∑

n=1

log h(xn) + ηT

(
N∑

n=1

t(xn)

)
−Na(η)

This function is convex (as a(η) is convex), then its maximum is achieved
at its unique stationary point. That point (η̂MLE) is given by setting ∂l

∂η
= 0.

So η̂MLE satisfies
N∑

n=1

t(xn) = N
da

dη
(η̂MLE).

However, as a′(η) = E(t(X)), we have that η̂MLE satisfies, the far more
practical equality,

1

N

N∑
n=1

t(xn) = E(t(X)).
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