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1. Mixture Models

We start by comparing three di�erent graphical models:

Figure 1.1. Three Di�erent Graphical Models.
Top left: Figure 1.1a is a model where a maximum like-
lihood estimate will be enough.
Top right: Figure 1.1b is, under almost all cases, a use-
less model, as any data can be represented in this form.
Bottom: Figure 1.1c is a mixture model with three clus-
ters.

In all cases, we assume that our focus is on the middle parameter
(indexed by µ). The �rst model is a fairly basic one, and a maxi-
mum likelihood estimate (MLE) will be su�cient enough. The second
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graph (1.b), is not speci�c to any model and almost any dataset can
be represented this way.
The third one however, gives a nice comprimise between the other

two. It has some structure that we can exploit but it's still a good
model for non-homogenous data. These models are called mixture
models. Each group of the data is called a cluster (in this case we have
K = 3 clusters). It's easy to see that, once the clusters are known,
the problem of estimating the parameters becomes so much simpler.
Unfortunately, with actual data, we don't know the graph structure.
Therefore, estimation of the parameters and the cluster structure re-
quire more advanced methods. We will use the following graphical
model for mixture models.

Figure 1.2. Mixture Model Graph

Here zn is a multinomial random variable and

zkn =

{
1 if instance nis from component k

0 otherwise
.

π = (π1 , . . . , πK) are the mixture proportions. In other words, πk is
the probability of having xn belong to the i-th cluster1. They are used
to represent our prior over choice of components. µ1, . . . , µK are the
mean parameters for the components 1 to K.
Before moving on, we also note that for the models considered here,

we don't estimate the number of clusters K and we �x it. Also, our
goal is not to estimate the posterior distrubtions of either µk or zn but
rather point estimation of these parameters.

Complete Data Likelihood. To estimate the parameters, we start
with the simplest question: How do we write down the likelihood if

1Since
∑K

i=1 πi = 1, we have πK = 1 −
∑K−1

i=1 πi. Then estimation of these

parameters require K − 1 many unknows rather than K.
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we knew zkn? Given the mixture distributions πk and the necesssary
parameters for each component θk, we can write the likelihood as

p(x, z|θ, π) =
∏
n

∑
k

zknp (xn|θk)πk,

where for each k, only one of the terms zkn is equal to 1 and the rest
are zero. We call this the complete data likelihood.

Example. In order to show how to derive the complete data likelihood,
we consider the following example. We consider data coming from two
clusters (K = 2) with four data points (N = 4). We denote the
parameters for clusters by λ1 and λ2

2. The data are assumed to come
from a Poisson distribution which has the following probability density
function

p(x|λ) = e−λλx

x!
.

The data points and their clusters are given in Table 1.1.

xi zi
1 2 1
2 7 2
3 3 1
4 9 2

Table 1.1. Data points and clusters for Complete Data
Likelihood Example

The complete data likelihood equals

p(x, z|λ, π) =
∏
n

∑
k

zknp (xn|λk)πk

=
e−λ1λ21

2!
π1
e−λ2λ72

7!
π2
e−λ1λ31

3!
π1
e−λ2λ92

9!
π2.

We then take the log to get the log-likelihood

log (p(x, z|λ, π)) =
∑
n

−λzn + xn log (λzn)− log (xn!) + log (πzn)

= −2λ1 + (2 + 3) log (λ1)− log (2!)− log (3!) + 2 log (π1)

−2λ2 + (7 + 9) log (λ2)− log (7!)− log (9!) + 2 log (π2) .

2θ = λ
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To get the maximum-likelihood estimate (MLE) for λ1, we take the
derivative of the log likelihood with respect to λ1. Denoting nk the
number of samples from cluster k, we can write down this derivative as

∂ log(p(x, z|λ, π))
∂λ1

= −n1 +

∑
zkn=1 xn

λ1
.

If we set the derivative equal to zero, and solve for λ1, we get the
MLE estimate for λ1

λ̂1 =

∑
zkn=1 xn

n1

,

in other words, the estimate for λ1 for this example is the sample
average from cluster 1. We can repeat the same procedure to obtain
the same result for λ2.
With the complete data likelihood, we can also �nd the MLE esti-

mates for the mixing probability π1. First note that, π2 = 1−π1. Then
we can write the log-likelihood as

log (p(x, z|λ, π)) = −2λ1 + (2 + 3) log (λ1)− log (2!)− log (3!) + 2 log (π1)

−2λ2 + (7 + 9) log (λ2)− log (7!)− log (9!) + 2 log (1− π1) .
Taking the derivative with respect to π1, we get

∂ log (p(x, z|λ, π))
∂π1

=
n1

π1
− n2

1− π1
.

Then, we set this value equal to zero and solve for π1, which gives
π̂1 = n1

n1+n2
. That is, MLE estimate for the mixing probabilities are

given by the ratio of the sample sizes from each cluster.

Marginal Likelihood. In the formulation of the complete data likeli-
hood and the above example, we assumed that we knew which clusters
the points belong to. However, with real data, as we don't know which
points belong to which cluster, we need to consider the likelihood only
over x. To calculate this term , we make use of the complete data
likelihood and we sum over possible z's to obtain

p(x|θ, π) =
∑
z

p(x, z|θ, π) =
∑
z

∏
n

∑
k

zknp (xn|θk) πk.

The above expression is called the marginal likelihood. Unfor-
tunately, evaluating the marginal likelihood is often computationally
infeasible. To see this, consider a simple example with two clusters
and 250 data points. The summation over possible clusters (where all
combinations of zkn are considered) requires summation over KN terms.
In this example, K = 2 and N = 250, and KN is huge3. Furthermore,

3In fact, it is larger than the number of atoms in the observable universe.
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we can't even consider the log of the marginal likelihood, as the sum-
mation over z terms �blocks� the log.
From the formulation, it is obvious that a di�erent method is needed

to maximize the marginal likelihood in terms of the parameters π and
θ. The E-M algorithm considered in the following section is one of �the
best� (and most of the time �the only�) techniques to solve this.

2. E-M Algorithm

The Expectation-Maximization (E-M) algorithm was introduced by
Dempster et al. in their 1977 paper4. The algorithm gets around the
problem of maximizing the marginal likelihood by assuming that it has
the �expected complete data likelihood�. The expected complete data
likelihood replaces terms zkn by the expected value of these random
variables. Now, instead of binary variables zkn, we have

τ kn = E
[
zkn|xn, θ, π

]
= p

(
zkn = 1|xn, θ, π

)
∝ p

(
zkn = 1|π

)
p (xn|θk) ∝ πip (xn|θk) ,

which take values between 0 and 1 and represent the probability that
xn belongs to cluster k.
After putting in τ kn instead of zkn to the complete data likelihood,

and taking the log we obtain the expected complete log-likelihood,
which is a lot simpler to evaluate compared to the marginal likelihood.
The expected complete data likelihood can be calculated by

Eτ [log (P(x, z|θ, π))] =
∑
n

∑
k

τ kn log πip (xn|θk) .

We can then maximize over θ and π given the expected complete data
likelihood to �nd better �ts to the data. This is how the E-M al-
gorithm obtains new parameters. These iterations are repeated until
convergence. See the following box for the pseudo-code.

4A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood

from incomplete data via the EM algorithm. Journal of the Royal Statistical Soci-

ety, Series B, 34:1-38.
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Algorithm 1 E-M Algorithm

Input: D = (xi|1 : N) (data),
K(number of clusters),
θ0, π0 (initial values for estimates of θ and π)

Output: θT , πT (estimates for parameters θ and π)

• Set t = 0 (a counter)
• Repeat until convergence (‖θt − θt−1‖ < ε, ‖πt − πt−1‖ < ε):

� E-Step: Holding θt and πt �xed, evaluate

τ kn = E
[
zkn|xn, θt, πt

]
and write down the expected complete log-likelihood:

Eτ [log (P(x, z|θt, πt))]
� M-Step: Holding τ kn �xed, let

(θt+1, πt+1) = argmax
θ,π

Eτ [log (P(x, z|θ, π))]

� t = t+ 1 (increase the counter)

Example. We consider the same data set as in Section 1, but now,
we assume that we don't know the underlying cluster structure. We
ran the E-M algorithm four times with di�erent initial λ values for
the two clusters. We stopped the algorithm when the change in the
parameters

(∣∣λnew1 − λold1

∣∣+ ∣∣λnew2 − λold2

∣∣) was less than 0.001. Table
2.1 summarizes the results. The �rst column is the initial λ values for
the clusters and the second column is the number of iterations until
convergence. The �nal estimates, λ̂1 and λ̂2 are given in the last two
columns.

λinitial1 λinitial2 Iterations until convergence λ̂1 λ̂2
1 4 19 2.683 7.401
2.5 8 11 2.683 7.401
4 1 19 7.401 2.683
30 35 45 7.401 2.683

Table 2.1. E-M Algorithm Results

It is seen that the algorithm converged to the same solution even
under di�erent initial λ values (for the 3rd and the 4th runs, the clusters
were chosen such that the 1st cluster was actually the 2nd one and
etc.). However, this is not always the case for the E-M algorithm, and
to avoid a local minimum, the algorithm should be run several times
under di�erent initial values.


