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1 Linear regression

Let D = {(Xn, Yn)}Nn=1. Find β that can predict Ynew from Xnew

Fit coefficients to minimize the sum of squared distances from a line to
all points. The objective function of β, a scalar, is:

RSS(β) =
1

2

N∑
n=1

(Yn − βXn)2

RSS: Residual sum of squares
To optimize on β, we take the derivative.

dRSS(β)

d β
= −

N∑
n=1

(Yn − βXn)Xn

The optimal coefficient β̂ can be shown as:

β̂ =

∑N
n=1 YnXn∑N
n=1X

2
n

Ŷnew = β̂Xnew

Note: Xnew is always assumed as given.
In general:

Y = β0 +
P∑
i=1

βiXn,i
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where β is assumed to be a vector of n coefficients and an intercept term.
To simplify, set

βp+1 = β0 , Xp+1 , 1

y = βTX

and

RSS(β) =
1

2

N∑
n=1

(Yn − βTXn)2

The gradient

ORSS(β) = −
N∑

n=1

(Yn − βTXn)Xn

Here, we could use an optimizer, but for linear regression we can solve
this exactly.

The design matrix is defined as

X =

 X11, X12, ... X1p

X21, X22, ... X2p

Xn1, Xn2, ... Xnp


The response vector is Y =< Y1, ..., Yn > where each component is a

response from the observed data.

lmR = lm(y ∼ x)

OβRSS(β) = −XT (Y −Xβ)

set to ∅ vector:
XTY −XTXβ̂ = 0

β̂ =
XTY

XTX

called normal equations. Note: XTX needs to be invertible.
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2 Probabilistic interpretation

~ ~- � �
��
Xn Yn

β

N

Conditional Model

Yn |Xn ∼ N(βTXn, σ
2)

Constant σ2 indicates that a Gaussian bump exists at each point along
the prediction line, with a mean being the predicted mean and variance σ2.

Fit β conditional maximum likelihood

L (β ; D) = log
N∏

n=1

1√
2πσ2

exp

{
− 1

2σ2
(Yn − βTXn)2

}

=
N∑

n=1

−1

2
log 2πσ2 − 1

2σ2
(Yn − βTXn)2

Optimize w/r/t β, same as minimizing the RSS.

β̂ = arg max
β

− 1

2σ2

N∑
n=1

(Yn − βTXn)2

Prediction: E [Ynew|Xnew ,β] = β̂TXnew

Note:σ2 doesn’t play a role.

3 Bias-variance tradeoff

Consider a random data set drawn from a linear regression model. Hold the
design matrix fixed and draw

Yn|Xn ,β ∼ N(βTXn, σ
2)
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Contemplate β̂ as a random variable governed by prediction by the dis-
tribution of the data. Consider a new input X. How does the prediction from
β̂ compare to the “true” prediction βTX?

MSE(β̂TX) = ED

[
(β̂TX − βTX)2

]
expanding:

= E[(β̂TX)2]− 2E[β̂TX]βTX + (βTX)2 + E[β̂TX]2 − E[β̂TX]2

= E[(β̂TX)2]− E[β̂TX]2 + (E[β̂TX]− βTX)2

(E[β̂TX]−βTX)2 is the squared bias. Variance reflects how sensitive the
estimate is to randomness inherent in the data.

If (E[β̂TX]−βTX) = 0, then the estimator is unbiased. Classical statis-
tics focused solely on unbiased estimators. At present, some bias is considered
is the variance is lowered.

4 Gauss-Markov Theorem

The MLE/least squares estimate is the unbiased estimate with the least
variance. In regression we trade off bias for variance through regularization
(placing constraints on β).

If the true MLE β lives outside the constraints, then the estimate must
be biased. Regularization encourages smaller and simpler models that are
easier to try to interpret. This approach is more robust to overfitting, which
results in poor predictive power due to matching too closely to a training
data set.
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