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1. ELIMINATE AND THE PROPAGATION ALGORITHM

During the first part of this lecture, we returned to the message-passing
formulation of ELIMINATE. We noted that a message from a node j to its
neighbor i has the form,

(1) mji =
∑
xj

ψ(xj)ψ(xi, xj)
∏

k∈N(j)\i

mkj(xj).

To illustrate ELIMINATE, we employed variants on the following graph:

We then noted that the marginal probabilities at each node were defined
using sums and products of potential functions as follows:

(2) p(x) =
1

Z

∏
i

ψ(xi)
∏

(i,j)∈E

ψ(xi, xj).

In the preceding equation, the constant Z was defined using the sum over
all other marginal probabilities:

(3) Z =
∑
x′

∏
i

ψ(x
′

i)
∏

(i,j)∈E

ψ(x
′

i, x
′

j).

In light of these equations, it was clear that ELIMINATE depends on
using potential functions, which we can interpret as messages from a node
that is being eliminated to its parents. To visualize this message-passing
interpretation, we employed a variant of the graph we had drawn earlier:
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We then noted that ELIMINATE has an obvious flaw: when you consider
different query nodes, you recompute some messages from scratch. By
designing an algorithm that could exploit this redundancy, we arrived at the
belief propagation algorithm. It is a message passing protocol, i.e. a rule
for when we can pass messages.

Specifically, we have only one rule in our protocol: a node, j, can send a
message, mji, to its neighbor, i, only after it has received messages from all
of its other neighbors. In light of this, we rewrite our equation for marginal
probabilities as follows:

(4) p(xf ) ∝ ψ(xf )
∏

e∈N(xf )

mef (xf ).

In contrast to ELIMINATE, when performing the propagation algorithm,
we create messages in all directions at once. Thus, our graph is modified
again to look like this:

Because the marginal equation shown earlier holds for any node in the
graph, we can compute the marginal for any node after a single round of
message-passing.

Having noted this, we asked, “what’s being passed exactly when we pass
these messages?” The messages we pass are marginal probabilities for each
node, computed as if none of the rest of the graph existed.

Then we asked, “what happens if we attempt to perform the propagation
algorithm on a graph with cycles?” For example, what happens if we run
propagation with the following graph?
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To answer this, we said that, being computer scientists, we can just try
running propagation despite the obvious problems. The resulting algorithm
is called loopy belief propagation. Sometimes it converges; sometimes it
diverges. There is a research literature about when loopy belief propagation
does or does not converge.

We then returned to a specific formulation of the algorithm using poten-
tial functions for the following graph:

Here we set the potential functions based on the conditional probabilities:

(5) ψ(xj, xi) = p(xi | xj).
The marginal probabilities were then computed using the Law of Total
Probability:

(6) p(xi) =
∑

p(xi)p(xi | xj).

2. STATISTICAL CONCEPTS

In statistics, we consider a general question: how can we use joint prob-
ability distributions to make meaningful statements about observed data?

One way is to employ graphical models. A graphical model (G.M.) is a
family of distributions, in which the observed variables are shaded and the
hidden variables are unshaded.

Setting parameters for a graphical model defines a particular member of
the family, e.g. specific conditional probability tables (for directed models)
or potential functions (for undirected models). The parameters are generally
labeled as Θ.

Inference occurs when we suppose that we know the model structure, but
not the parameters. In this case, we observe data X . Because we have the
joint distribution, we can compute p(X | Θ) for every Θ. The general goal
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of statistical inference is then to “invert” the natural relationship, i.e. to
learn something about Θ given X .

3. BAYESIAN STATISTICS

A lot of statistics uses probability models. In Bayesian statistics, we only
work with probability models. All statistical inference is formulated as a
probabilistic computation.

Thus, the inversion that represents inference results from Bayes’ Rule,
where we consider the probability of Θ given X , i.e.

(7) p(Θ | X) =
p(X | Θ)p(Θ)

p(X)
.

When we treat Θ as a random variable, we need to posit a prior, p(Θ).
To an “orthodox Bayesian”, p(Θ) encodes your prior belief about Θ be-
fore seeing any data. Taste determines the palatability of using priors. For
example, Freedman calls a prior an “opinion”, while Jaynes calls a prior
“common sense”.

For any Bayesian, inference results in a distribution over Θ given the
data X . This distribution is called the posterior. Computing the posterior is
therefore the central problem for Bayesian statistics.

4. FREQUENTIST STATISTICS

Frequentists don’t like putting priors on parameters. They also don’t want
to be restricted to probabilistic computations. Thus, Frequentists consider
estimators for Θ, which are functions of X . They then try to understand
various criteria like the bias, variance and consistency of the estimators.
They do this by treating the data as random based on a true parameter, Θ.

The core problem for Frequentists is understanding the relationship be-
tween the true parameter Θ and the estimator Θ0 as the number of data
points increases. For example, consistency involves the convergence of Θ0

to Θ as the number of data points increases. Bias corresponds to systematic
errors in the value ofΘ0 relative toΘ, i.e. an unbiased estimator is one such
that E[Θ0 −Θ] = 0. And the variance of an estimator reflects the spread of
the estimator, Θ0, around Θ.

One particularly important estimator is the maximum likelihood estima-
tor (MLE). To compute the MLE, we treat p(X | Θ), which we call the
likelihood, as a function of Θ. We then choose Θ̂ = arg maxΘ p(X | Θ) as
our estimator. Notice that no prior is required for performing this computa-
tion.

In practice, we often use the log likelihood when defining the MLE: Θ̂ =
arg maxΘ log p(X | Θ). We use the log likelihood because the logarithm
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is a monotonic function of the likelihood (and hence leaves the maximum
unchanged), but it is easier to work with algebraically and computationally.

5. BLURRED LINES

The boundary between Bayesian and Frequentist approaches is not so
clear. For example, Bayesian ideas can be used in Frequentist calculations.
Consider the “Bayes Estimate”:

(8) Θ̂Bayes = E[Θ | X],

alternatively defined as,

(9) Θ̂Bayes =

∫
Θp(Θ | X) dΘ.

Likewise, we can create the Bayesian analogue to the MLE, which is the
maximum a posteriori (MAP) estimator:

(10) Θ̂MAP = arg max
Θ

p(Θ | X).

Because p(Θ) is constant with respect to Θ, we can use Bayes’ Rule to
simplify this problem, giving,

(11) Θ̂MAP = arg max
Θ

p(Θ)p(X | Θ).

After taking logs we find this equivalent equation:

(12) Θ̂MAP = arg max
Θ

[log(p(Θ)) + log(p(X | Θ))].

Here the log(p(Θ)) term is called a regularizer or a penalty, and the equa-
tion as a whole becomes a penalized likelihood. We can also examine Fre-
quentist properties of these estimators.

Returning to Bayesian statistics, it is worth noting that our priors on Θ
themselves are distributions, and so they have parameters as well. These
are called hyperparameters and are usually labelled α. We then consider
p(Θ | α).

We can address this computation using Frequentist ideas. For example,
the hyperparameters can be estimated with MLE, as shown below:

(13) αML = arg max
α

p(X | α).

In this equation,

(14) p(X | α) =

∫
p(X | Θ)p(Θ | α) dΘ.
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This approach is called “Empirical Bayes”. It is worth noting that Lind-
ley, an orthodox Bayesian, said that “there is nothing less Bayesian than
empirical Bayes.”


