
COS 513: Foundations of Probabilistic Modeling

Young-suk Lee

Lecture 5

1 Administrative

• Midterm report is due Oct. 29th.

• Recitation is at 4:26pm in Friend 108.

• R is a computer language for statistical computing and graphics, and is highly recommended
for this class. RSeek is a good search engine for R. [URL: www.r-project.org]

2 Project Ideas in Probabilistic Modeling

Super Topics:

1. Model Checking

2. Hierarchical Modeling (used in Sociology)

3. Information Geometry

4. Structural Learning

5. Online Learning/Estimation

6. Generative vs. Discriminative Modeling

7. Information theory and Statistics (such as code and data compression)

8. Application of X to Y

9. Graph Theory and Graphical Models

1



Resources:

1. Journals

[JMLR] Journal of Machine Learning Research

[MLJ] Machine Learning Journal

2. Conferences

[NIPS] Neural Information Processing Systems

[ICML] International Conference on Machine Learning

[UAI] Uncertainty in Artificial Intelligence

[AISTATS] Artificial Intelligence and Statistics

[KDD] Knowledge Discovery and Data Mining

[EMNLP] Empirical Methods in Natural Language Processing

[SIGIR] Special Interest Group on Information Retrieval

3. Statistic Journals

[JASA] Journal of the American Statistical Association

[AAS] Annals of Applied Statistics

[BA] Bayesian Analysis

[AoS] Annals of Statistics (more theoritical)

4. Books

• The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Trevor
Hastie, Robert Tibshirani, Jerome Friedman
[URL: http://www-stat.stanford.edu/ tibs/ElemStatLearn/]

• Bayesian Data Analysis by Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald
B. Rubin
[URL: http://www.stat.columbia.edu/ gelman/book/]

• Pattern Recognition and Machine Learning by Christopher Bishop
[URL: http://research.microsoft.com/en-us/um/people/cmbishop/PRML/]

• Probabilistic Graphical Models: Principles and Techniques by Daphne Koller and Nir
Friedman
[URL: http://pgm.stanford.edu/]

• Information Theory, Inference, and Learning Algorithms by David MacKay
[URL: http://www.inference.phy.cam.ac.uk/mackay/itila/

2



(a) A undirected tree (b) A directed tree (c) Neither

Figure 1: Examples

3 Probability Propagation on Trees and The Sum-Product Algo-
rithm

The sum-product algorithm (also known as the belief propagation algorithm) is a general inference
algorithm for graphical models that are trees and that can compute all singe-node marginals. Al-
though this algorithm does not apply to arbitrary graphs but only to trees, we study this algorithm
for the following reasons:

1. Trees consist of a significant fraction of classical graphical models such as the hidden Markov
model and the state-space model.

2. This algorithm provides insight to the completely general inference algorithm, the junction
tree algorithm.

3. Later, we will see this algorithm as the basis for approximate inference with belief propagation.

3.1 Definition of Trees

Undirected Tree A undirected graph in which there is only one path between any pair of nodes.
See Figure 1a.

Directed Tree Any graph whose moralized graph is an undirected tree. See Figure 1b.

3.2 Parameterization

We first consider the parameterization of probability distributions on undirected trees. Since the
cliques are single nodes and pair of nodes, we get:

p(x) =
1

Z

∏
i∈V

ψ(xi)
∏

(i,j)∈E

ψ(xi, xj), (1)

3



Figure 2: The tree in Figure 1a rooted at X3. Note that the red edges do not denote the edges of
a directed tree.

for a tree T (V,E) with nodes V and edges E. In the directed case, we get:

p(x) = p(xr)
∏

(i,j)∈E

p(xj |xi), (2)

where (i, j) is a directed edge such that i is the unique parent of j. Note that the following potential
functions ψ(x) and ψ(xi, xj) shows that a directed tree is a special case of undirected trees and so
we will only consider undirected trees:

ψ(xr) = p(xr), (3)

ψ(xi) = 1ifi 6= r, (4)

ψ(xi, xj) = p(xj |xi), (5)

Z = 1. (6)

3.3 Evidence

Given the evidence E, we define:

ψE
i (xi) =

{
ψ(xi)δ(xi, xi) i ∈ E,
ψ(xi) i /∈ E.

(7)

Now we rewrite the conditional probability,

p(x|xE) =
1

ZE

∏
i∈V

ψE(xi)
∏

(i,j)∈E

ψE(xi, xj) (8)

which has exactly the same form as p(x). Therefore, we also do not pay special attention to evidence.

4



Figure 3: A undirected tree where k denote the descendants of node j and l denotes the sibling
nodes and its descendants.

3.4 Undirected Eliminate

Recall the Elimination algorithm:

1. Choose an elimination ordering I such that query node f is last.

2. Place all potential functions on the active list.

3. Eliminate each node i by removing all potential functions referencing node i from the active
list, taking the product over those functions referencing i, summing over xi, and putting the
resulting intermediate function back on the active list.

Similarly, on a tree, we treat f as the root of the tree, direct all edges to point away from f (not as a
directed graphical model), and consider an ordering where each node is eliminated after its children.
For example, given the tree in Figure 1a, if X3 is our query node, we root the tree at X3 and direct
(in red) the edges away from X3 (see Figure 2). There can be multiple elimination orderings.
One possible elimination ordering I is: {X5, X4, X2, X1, X6}, and another is: {X6, X5, X4, X2, X1}.
Notice that the graph from this preliminary step is in fact the reconstituted graph, and that the
greatest clique size is 2. Since all elimination cliques are of size 2, the elimination algorithm is
efficient for not only a particular query but also for any query.

3.5 More on Elimination Step

Consider Xi, Xj where Xi is closer to the root (see Figure 3). What fact is created when Xj is
eliminated? We get the product over the following functions:

• ψ(xj)ψ(xi, xj)

5



• no functions including node k (the descendants of node j)

• no functions including node l (the sibling nodes and its descendants)

• other functions of xj

Once Xj is eliminated, the resulting factor is a function of xi, which we call the message from node
j to node i, or mji(xj). Thus, two equations follow:

mji(xi) =
∑
xj

ψ(xj)ψ(xi, xj)
∏

k∈N(j)\i

mkj(xj) (9)

p(xf |xE) ∝ ψ(xf )
∏

e∈N(f)

mef (xf ) (10)

where N(i) is the set of neighbors of i. Note that in equation (10), we see no pairwise potential
function because f has no parents.

3.6 Some Examples of Probability Inference

Let us try on some examples to understand the key insight in the sum-product algorithm. In Figure
4a, we wish to infer on X1. Given the elimination ordering I = {3, 4, 2}, we compute:

m32 =
∑
x3

ψ(x3)ψ(x3, x2) (11)

m42 =
∑
x4

ψ(x4)ψ(x4, x2) (12)

m21 =
∑
x2

ψ(x2)ψ(x2, x1)m42(x2)m32(x2) (13)

p(x1) ∝ ψ(x1)m21(x1) (14)

Likewise, we infer on X2, but notice that we do not have to recomputed m32(x2) and m42(x2) (see
Figure 4b). Thus, we only need to compute m12(x2):

m12 =
∑
x1

ψ(x1)ψ(x1, x2). (15)

This message redundancy is the key insight in the sum-product algorithm which leads to a message
passing protocol that will be discussed in more detail.

6



(a) rooted at X1 (b) rooted at X2

Figure 4: Both trees are identical graphs with different roots.

7


