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LECTURE 4

ERAN ELDAR

1. Directed and Undirected Graphs

Some directed graphs can be represented with an identical undirected graph.

For example, the following directed graph:

is identical to the following undirected graph:

as both graphs imply:
X ⊥⊥ Z | Y
X ⊥⊥/ Z

1
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However, there is no undirected graph that is identical to the following directed graph:

When this is the case, we can use ’moralization’ to construct an undirected graph that
represents a family of probability distributions which includes (though is not identical to) the
family of probability distributions that is represented by the undirected graph. ’Moralizing’
is done by connecting the parents of each node. The result of ’moralizing’ the graph above
is:
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2. Inference

f - node index
E - set of ’evidence’ nodes
R - remaining nodes

Goal: compute P (Xf | Xe)

Step 1: P (Xf , XE) =
∑
XR

P (X)

Step 2: P (XE) =
∑
Xf

P (Xf , XE)

Step 3: P (Xf | Xe) =
P (Xf ,XE)

P (XE)

Issue in step 1: if R contains many nodes, the inference is O(K |R|), which is usually not
pratical.

Let’s return to our favorite graphical model:
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Our goal is to compute P (X1 | X6)

Accordingly, we define:

f = X1

E = {X6}
R = {X2, X3, X4, X5}

X6 = X6 clamped to the value we are conditioning on.

P (X1, X6) =
∑
X2

∑
X3

∑
X4

∑
X5

∑
X6

P (X1)P (X2 | X1)P (X3 | X1)P (X4 | X2)

P (X5 | X3)P (X6 | X2, X5)δ(X6, X6)

= P (X1)
∑
X2

P (X2 | X1)
∑
X3

P (X3 | X1)
∑
X4

P (X4 | X2)∑
X5

P (X5 | X3)
∑
X6

P (X6 | X2, X5)δ(X6, X6)

We then define m6(X2, X5) ,
∑
X6

P (X6 | X2, X5)δ(X6, X6) and get:

P (X1, X6) = P (X1)
∑
X2

P (X2 | X1)
∑
X3

P (X3 | X1)
∑
X4

P (X4 | X2)
∑
X5

P (X5 | X3)m6(X2, X5)

We then define m5(X2, X3) ,
∑
X5

P (X5 | X3)m6(X2, X5) and get:

P (X1, X6) = P (X1)
∑
X2

P (X2 | X1)
∑
X3

P (X3 | X1)
∑
X4

P (X4 | X2)m5(X2, X3)

= P (X1)
∑
X2

P (X2 | X1)
∑
X3

P (X3 | X1)m5(X2, X3)
∑
X4

P (X4 | X2)

We then define m4(X2) ,
∑
X4

P (X4 | X2) which equals 1 and get:
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P (X1, X6) = P (X1)
∑
X2

P (X2 | X1)
∑
X3

P (X3 | X1)m5(X2, X3)m4(X2)

= P (X1)
∑
X2

P (X2 | X1)
∑
X3

P (X3 | X1)m5(X2, X3)

We then define m3(X1, X2) ,
∑
X3

P (X3 | X1)m5(X2, X3) and get:

P (X1, X6) = P (X1)
∑
X2

P (X2 | X1)m3(X1, X2)

We then define m2(X1) ,
∑
X2

P (X2 | X1)m3(X1, X2) and get:

P (X1, X6) = P (X1)m2(X1)

Lastly, we compute:

1: P (X1, X6) = P (X1)m2(X1)

2: P (X6) =
∑
X1

P (X1)m2(X1)

3: P (X1, X6) = P (X1,X6)

P (X6)

3. Elimination algorithm

At each step, sum over a product of functions:
- conditional probabilities P (Xi | Xπi)
- delta functions δ(Xi, X i)
- internediate functions mi(XSi

), generated by previous steps of the algorithm.

I. Initialization

1. Choose an ordering of the variables such that Xf is last.
2. Place P (Xi | Xπi) on an active list of functions.
3. Place δ(Xj, Xj) on active list for all j ∈ E
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II. Update

For each i ∈ I:
1. Remove all functions on the active list that contain i as an argument (φi(Ti) in the book).

2. Construct mi(Si) =
∑
Xi

∏
thesefunctions.

Note: nothing before i in I can be in Si or Ti.
3. Add mi(Si) to the active list.

III. Normalize

φf (Xf ) = P (Xf , XE)

P (Xf | XE) =
φf (Xf )∑

Xf

φf (Xf )

Complexity

I = {6, 5, 4, 3, 2, 1}

The complexity of Eliminate is governed by the number of arguments in the intermediate
functions, which depends on the ordering I.

To determine the complexity for a certain ordering I, we first ’moralize’ our graph and then
repeatedly remove a node according to I and connect all of the nodes that it was connected to.
The result, called the ’reconstituted’ graph, is shown below for our example graphical model:
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The complexity of using the Eliminate algorithm with the ordering I is exponential in the
largest clique of the reconstituted graph.

For example, consider the following graph:

If the central node is removed first, all other nodes will need to be connected, forming a
clique of size 8. This indicates that the complexity of Eliminate with this ordering will be
relatively high (exponential in 8).

In contrast, if all of the leaf nodes are removed first, the largest clique that is formed at any
point has size 2. With this ordering, the complexity of Eliminate will be lower (exponential
in 2).


