
COS513: NOTES FROM September 22, 2010

JOHN ASMUTH

0.1. Probability Review.

0.1.1. Joint Distributions. A joint distribution is the probability distribution over some set of ran-
dom variables (RVs), denoted, for example, P (X1, X2, X3).

Since this is a distribution, we know that it necessarily sums to 1:∑
x1

∑
x2

∑
x3

p(x1, x2, x3) = 1.

This particular distribution, assuming the RVs are binary, can be represented with a table of size
23, with one entry for each unique combination of the values for X1, X2 and X3.

In general, a joint distribution over N binary RVs requires a table of size 2N .

0.1.2. Marginal Probabilities. A marginal probability is found by summing out all other RVs. For
example, if we know the joint P (X1, X2) and we want to find the marginal P (X2), it can be found
with the following computation:

P (X2) =
∑
x1

P (X1 = x1, X2).

0.1.3. Conditional Probabilities. A conditional probability is the distribution over values for one
RV or set of RVs, assuming that the values for some other set of RVs are held constant. For
example, the distribution over X1 for some known value of X2 is denoted P (X1|X2), and read “the
probability of X1 given X2”. The ‘|’ is called the “conditioning bar”.

The conditional can be calculated by dividing the joint by the marginal. Figure 1 shows an exam-
ple.

P (X1|X2) =
P (X1, X2)

P (X2)

1
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Figure 1. Left: A table representing the joint distribution over two binary RVs.
Right: A table representing the conditional probability distribution P (X1|X2 = H),
calculated by dividing the joint P (X1, X2) by the marginal P (X2).

0.1.4. Independence. The independence relation between two RVs X1 and X2 is written X1 ⊥⊥
X2.

X1 ⊥⊥ X2 iff P (X1, X2) = P (X1)P (X2)
or P (X1|X2) = P (X1)

This relation is symmetric: X1 ⊥⊥ X2 ↔ X2 ⊥⊥ X1.

1. Graphical Models

Suppose we have a set of RVs {X1, ..., Xn}, and we are interested in questions of independent
and conditional probability. Both of these kinds of questions can be answered using the joint
probability.

• Independence questions: factorization of the joint.

• Conditional questions: normalization and marginalization of the joint.

For now, we shall consider only discrete RVs.

If each RV can have r different values, then the table used to represent P (X1, ..., Xn) has rn

entries.

Graphical Models (GMs) provide a more economic representation of the joint by taking advantage
of local relationships between RVs.
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Figure 2. A DGM describing a family of joint distributions on the RVs
{X1, ..., X6}. The DGM also indicates the “parent of” relationship for each RV.
For example, π6 = {X2, X5}.

1.1. Directed GMs. A Directed Graphical Model (DGM) is a Directed Acyclic Graph (DAG)
G = {V,E}.

• The nodes correspond to RVs

• The edges denote a “parent of” relationship. πi ≡ parents of Xi

The joint probability defined by the DGM in Figure 2 is

P (X1, ..., X6) = P (X1)P (X2|X1)P (X3|X1)P (X6|X3)P (X4|X2)P (X5|X3)P (X6|X2, X5).

In general, P (X1, ..., Xn) =
∏n

i=1 P (Xi|Xπi).

As a consequence, the joint probability is defined in terms of many local probability tables.

The sizes of these tables grow exponentially with the number of parents, where before the size of
the (one) table grew exponentially with the number of RVs.

The sizes of the tables for the DGM in Figure 2 are

|P (X1)|+ |P (X2|X1)|+ |P (X3|X1)|+ |P (X6|X3)|+ |P (X4|X2)|+ |P (X5|X3)|+ |P (X6|X2, X5)|
= 2 + 4 + 4 + 4 + 4 + 8
= 26.
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Figure 3. The DGM from Figure 2 describes only a subset of all possible distribu-
tions on 6 RVs.

In all, 26 numbers are required to exactly represent distributions for the DGM in Figure 2, when
the RVs are all binary. A full description would require 26 = 64 numbers.

By choosing specific tables for all P (Xi|Xπi), we produce a joint.

N.B. The possible joints are not all possible P (X1, ..., X6). That is, a set of distributions indicated
by a DGM is a subset of all possible joint distributions for the RVs.

1.1.1. Conditional Independence. Recall that for some sets of RVs XA and XB, that

XA ⊥⊥ XB ⇔ P (XA, XB) = P (XA)P (XB).

We can also denote conditional independence on another set of RVs XC with

XA ⊥⊥ XB|XC ⇔ P (XA, XB|XC) = P (XA|XC)P (XB|XC)
or P (XA|XB, XC) = P (XA|XC).

Questions of independence are questions about how the marginals factorize. These questions can
be answered by examining the GM structure.

Basic conditional independence statements:
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• Chain rule:

P (X1, ..., X6) = P (X1)
P (X2|X1)
P (X3|X1, X2)
P (X4|X1, X2, X3)
P (X5|X1, X2, X3, X4)
P (X6|X1, X2, X3, X4, X5).

In general,

P (X1, ..., Xn) =
n∏

i=1

P (Xi|X1, ..., Xi−1).

It is easy to show this for a joint of 3 RVs:

P (X1, X2, X3) = P (X1)P (X2|X1)P (X3|X1, X2)

= P (X1)
P (X1, X2)

P (X1)
P (X1, X2, X3)

P (X1, X2)
= P (X1, X2, X3).

The chain rule suggests:

P (X6|X1, ..., X5) = P (X6|X2, X5) ⇔ X6 ⊥⊥ {X1, X3, X4}|{X2, X5}.

The statement X6 ⊥⊥ {X1, X3, X4}|{X2, X5} is one of the basic conditional independence
statements about our example DGM in Figure 2.

• Let I be a topological ordering of the RVs. That is, if j ∈ πi, then j precedes i in the
order. Let νi be the set of indices appearing before i, not including those in πi. The basic
conditional independence statements are

{Xi ⊥⊥ Xνi |Xπi}.

For example, if I = {1, 2, 3, 4, 5, 6} is the topological ordering for the DGM in Figure 2, we
have the following basic independence statements:

X1 ⊥⊥ ∅ | ∅,
X2 ⊥⊥ ∅ | X1,
X3 ⊥⊥ X2 | X1,
X4 ⊥⊥ {X1, X3} | X2,
X5 ⊥⊥ {X1, X2, X4} | X3,
X6 ⊥⊥ {X1, X3, X4} | {X2, X5}.

Question: are these the only independence assumptions we can make from our DGM? (no)
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Figure 4. “A little sequence.” In this DGM, P (X, Y, Z) = P (X)P (Y |X)P (Z|Y ).

X Y Z

Figure 5. Same DGM as in Figure 4, except the node for Y is shaded to show that
we are conditioning on its value.

1.1.2. Bayes Ball Algorithm. The metaphor is that of bouncing a ball around your GM. If the ball
can “bounce” from one RV node to another, then we cannot make an independence assumption
about those two nodes.

To illustrate the rules which determine how the ball may bounce, we use examples on 3-node DGMs.
One of which appears in this lecture.

(1) Figure 4 shows a DGM that implies exactly one independence statement:

X ⊥⊥ Z|Y.

No other independence statements necessarily hold for all joints in the family described in
Figure 4. Figure 5 shows us how conditioning on Y ’s value will block a ball from bouncing
from X to Z.

Presumably we will hear more about this algorithm in the future.


