COS 487: Theory of Computation

Suggested reading: Sipser Chapters 4, 5, 6 .

Collaboration Policy

You are allowed to collaborate with other people enrolled in this class. If you solved a particular problem in collaboration with somebody else, please mention the collaborator(s) name.

It is a violation of class rules to look at solutions to any of the problems from any other person or source, including online ones.

Problems:

1. Show that the Post Correspondence Problem (see section 5.2), over a unary alphabet, is decidable.
2. Let $J=\left\{w \in \Sigma^{*} \mid\right.$ either $w=0 x$ for some $x \in A_{T M}$, or $w=1 y$ for some $\left.y \in \overline{A_{T M}}\right\}$. Show that neither J nor \bar{J} is Turing recognizable.
3. Suppose the Church Turing Thesis is false, and some advanced civilization has figured out how to solve the halting problem for TMs. They wish to send a brief message to the rest of the universe allowing living beings everywhere to solve the halting problem. Imagine that the set of valid inputs for the halting problem are numbered $1,2,3, \ldots$ and everybody agrees about this numbering. Show that the length of the message needed to decide the halting problem on the first i inputs is only $\lceil\log i\rceil$ (for large enough i).
4. Prove that a language L is recursively enumerable if and only if it can be expressed as

$$
L=\{x \mid \text { there exists } y \text { such that }\langle x, y\rangle \in R\}
$$

where R is a decidable language. In other words, you must prove that every language of this form is RE, and that every RE language has a related decidable language R that allows it to be expressed exactly as above.

5. (Rice's Theorem)

Let P be a nontrivial property of the language of a Turing Machine. Prove that the property of determining whether a TM's language has property P is undecidable.
More formally, let P be a language consisting of TM descriptions, where P fulfills two conditions. First, P is nontrivial - it contains some, but not all TM descriptions.

Second, P is a property of the language - if $\left.L\left(M_{1}\right)=L_{(} M_{2}\right)$ then $\left\langle M_{1}\right\rangle \in P$ iff $\left\langle M_{2}\right\rangle \in P$.
Prove that P is undecidable.
6. Using Rice's Theorem, prove the undecidability of the following languages:
(a) $\operatorname{INFINITE} E_{T M}=\{\langle M\rangle \mid M$ is a TM and $L(M)$ is an infinite language $\}$.
(b) $\{\langle M\rangle \mid M$ is a TM and $1011 \in L(M)\}$.
(c) $A L L_{T M}=\left\{\langle M\rangle \mid M\right.$ is a TM and $\left.L(M)=\Sigma^{*}\right\}$.
7. Describe how you could write a Java program which, in the spirit of the Recursion Theorem (6.3), prints out its own source code.
8. Show that the function $K(x)$ (see definition 6.28) is uncomputable.

