Suggested reading (for lectures $1,2,3$): Sipser Chapter 1.
A hint for this assignment: keep in mind the properties of regular languages. For instance, if you are trying to show that a language L is regular, it suffices to show that \bar{L} is accepted by a nondeterministic automaton.

Collaboration Policy

You are allowed to collaborate with other people enrolled in this class. If you solved a particular problem in collaboration with somebody else, please mention the collaborator(s) name.

It is a violation of class rules to look at solutions to any of the problems from any other person or source, including online ones.
Problems (from lectures 1, 2, 3):

1. Problem 1.31
2. Let L be a regular language. Show that the language L^{\prime} is also regular, where

$$
L^{\prime}=\{x: \text { no } w \in L \text { is a substring of } x\} .
$$

3. Problem 1.60

4. Problem 1.61
5. Suppose we augment the DFA model by allowing each state to have one epsilon arrow. Call such an automaton an ϵ-DFA. Such an automaton computes as an NFA does, but formally the transition function is of the form $\delta: Q \times \Sigma_{\epsilon} \rightarrow Q$, rather than to $\mathcal{P}(\mathcal{Q})$ as in an NFA.
Show that any NFA on n states can be converted to an ϵ-DFA with $\mathbf{O}\left(n^{2}\right)$ states.
6. The pumping lemma (Theorem 1.70) states that, if A is a regular language, then there exists a number p so that, for each string $s \in A$ of length at least p, there exist strings x, y, z so that
(a) $s=x y z$
(b) $|y|>0$
(c) $|x y| \leq p$
(d) For each $i \geq 0, x y^{i} z \in A$.

Is the converse true? Prove, or give a counter example.

