Hardware/Software Tradeoffs
forincreased Performance

John Hennessy, Norman Jouppi, Forest Baskett,
Thomas Gross, and John Gill

Departments of Electrical Engineering and Computer Science
: Stanford University

Abstract

Most new computer architectures are concerncd with maximizing
performance by providing suitable instruction sets for compiled
code and providing support for systems funclions. We argue that
the most cffective design methodology must make simultaneous
tradeolTs across all three areas: hardware, software support, and
systems support. Recent trends lean towards extensive hardware
support for both the compiler and operating systems software.
However, consideration of all possibic design tradcoffs may often
lead to less hardware support. Several examples of this approach
are preseated, including: omission of condition codes, word-
addressed machines, and imposing pipcline interlocks in software.
The specifics and performance of these approaches are examined
with respect to the MIPS processor.

1. Introduction

Until recently, the design of new computer architectures and the
demands of high Tevel language compilation were not well
integrated. Instead, archijtecturcs were dominated by concerns of
assembly language programs and maintaining capability with
featurcs contained in old architectures. Recently, architectures
have been more conscious of their major role as host machines for
high level language programs, This development is evident in the
modern microprocessors (e.g. the Z8000 and the 680Q0) and
iargcr machines such as the VAX.

The MIPS project has been supported by the DPefense Advanced Rescarch
Projects Agency under contract # MIA903-79-C-0680. Thomas Gross is
supporied by an IBM Graduate Fellowship,

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright no-
tice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for Com-
puting Machinery. To copy otherwise, or to
republish, requires a fee and/or specific
permission.

© 1982 ACM 0-89791-066-4 82/03/0002 $00.75

These architectures certainly address the concerns of running
compiled programs more than past efforts have done. However,
they assume a fixed and existent compiler technology. In most
cases, compilers for other machines are used as a basis for
examiniag the instruction set design [9, 13]. While this metho-
dology is certainly betier than a nonquantative approach, it is
inherently flawed. We propose a methodology where the
compiler, and in fact even new compiler technology, are major
inputs to the instruction set design process. The notion of the
compiler and its code gencrator playing a vital role in the
instruction set design process has been used in the design of a
processor to run C[3]. Inthis paper, we will advocate more
radical applications of compiler technology.

Adequate support for constructing systems software, e.g. the
operating system, and for programs compiled from a high level
language, is a necessily. While instruction set design issues are
largely ones of performance, cost, and reliability, inadequate
architectural support for the operating systent often leads to real
limitations in using the processor. Such limitations can determine
which memory management techniqucs (swapping versus paging)
are possible or feasible and might restrict any systcm containing
such a precessor. On the other hand, including elaborate support
in the processor architecture can often cause an overall decrease
in performance because of the increased overhead. In many
architectures, system issues {c.g., orthogonal handling of inter-
rupts and traps) are given low consideration. This trend prevails
in many current microprocessor architectures; for example, in

“several architectures page faults are not accommodated. T other

architectures, systemis issues arc the focus of the design to the
detriment of performance, as in the Intel IAPX-432,

We will argue that architeclure/compiter/system tradeofls are
inevitable, and thal by correctly making choices in at! three arcas
the designer can obtain a simpler design that will have increased
performance and reliabiiity for lower cost. We demonstrate
several applications of this approach and give specific cxamples
and empirical performance data from the MIPS project [5]. We
are primarily concerned with procedural. languages (e.g.,
ALGOI., Pascal, C, and Ada) and with von-Neuman archi-
tectures.

2. Architectural support for compiled.
languages

Architectures can support compiled lan;,uages in many ways. For

high performance in both executed code and within the compilers

themselves, architectures can best support high level languages by

providing simple, fast instruction sets that are easy for a compiler -

touse. .

2.1. Simple and fast instructions
This approach of a simpler instruction sct and its attractiveness
has been argued and demonstrated by ‘the RISC project [11).
From the compiler viewpoint, there are thrcc advantages of a
~ simple instruction set:
1. Because the instruction set is simpler, individual instruc-
tions execute faster. :

2. The compiler is not faced with the task of attempting to
_utilize a very sophisticated instruction that doesn’t quite fit
o any particul:ir high level construct Besides slowing down
other instructions, using these instructions is sometimes
slower than a customized sequence of simpler
instructions [12].

3. Although thesearchitectures may require more sophis-
ticated compiler technology, the potential perfonn@nce
improvements to be obtained from faster machines and
better compilers are substantial.

2.2. lLoad/store architectures

Compilers find load/store architectures to be a natural problem
decomposition: first get the operands, then use them. Requiring
compilers to do both at the same time when the architecture is not
completely orthogonal is more complex. Load/store architectures
can also increase the performance of compiled languagcs

Load/store architectures can yicld performance increases if
frequently-used operands are kept in rchsters Not only is
redundant memory traffic decreased, but addressing calculations
are saved as well. Software support for Joad/store architectures.
does not appear (o be a problem either: there are efficient register
allocation algorithms which produce good assignments 3, 1].
Although these algorithms require powerful and sophisticated
compiler technology, they pay off by yielding very dense and
near-optimal register assignments. Simpler register allocation
algorithms are possible. However, these algorithms are not as
effective because they do not consider all variables as equal
candidates to be assigned to a register and because they must
conservatively avoid difficulties that can arise from potential
aliasing,

Heavy use of registers will also improve code density. Code sbace
can increase greally when each operation has multiple memory

addresses, even of the form displacement(base). 1.oad and store

instructions in MIPS are at most 32 bits in length and are of five
types: long immediate, absolute, displacement(base),
(basc,index), and base shifted by n, 0<n<15. These addressing
modes require at most one ALU operation on data in general

registers and immediate data from the instruction. The last three
forms are less than 32 bits and may be packed with a possibly
unrelated ALU or shifter operation. All MIPS instructions,
although they may be made of up to two instruction pieces, are 32
bits in length and execute in one data memory cycle time.
Because Lhe two instruction pieces are disjoint they may be used
for parts of two indepcendent computations,

Orlhogonal immediate fields can additionally increase the code
density as they reduce the number of those loads which are
exccuted to load a register with a constant. In the MIPS
instruction format every operation can optionally contain a four
bit constant in the range 0-15 in place of a register field.
Additionally, a move immediate instruction will load an 8-bit
constant into any register. Table 2-1 contains the distribution of
constants {in magnitudes) found in a collection of Pascal
programs including compilers and VLSI design aid software.

Absolute Value Percentage
0 24.8%
1 19.0%
2 4.1%
3 - 15 20.8%
16 - 265 26.8%
> 255) 4.5%

Table 2-1: Constant distribution in programs

The large majority of the constants in the fange 16 - 255 represent

character constants. Most of the large constants (9255) represent

values that arc directly related to the function of the program and

do not rclate to constants in other programs. Thus, a 4 bit
constant should cover approximately 70% of the cases; the special

8 bit constant will catch all but 5%. To obtain small negative’
constants two approaches arc possible: provide for a sign bit in

the constants or provide reverse operators that allow the constants

to be treated as negative. MIPS uses the latter approach because it

allows more constants to be expressed and climinates the need for

sign extension in the constant insertion hardware,

2.3. Condition codes and control flow

Many architectures have included condition codes as the primary
method of implementing conditional control flow. Condition
codes provide an implicit communication between two otherwise
disjoint instructions. Condition codes can make life difficult for
compiler writers, especially in nonorthogonal architectures. Even
in reasonably orthogonal architectures (e.g., the M68000),
working with condition codes is not simple. Difficulties occur
largely because condition codes are side cffects of instruction
execution. ’

Condilion codes are typically used for conditional control flow

" breaks, evaluation of boolean expressions, overflow detection and

multiprecision arithmetic. Table 2-2 shows a typical set of features
associdted with condition codes and various architectures with
these features. After discussing the disadvantages of condition
codes from a hardware viewpoint, we will cxamine their use in
each onc of these inslances and propose alternatives.

Has condition code Ho Condition.che
Set on Set on

moves operations
Conditional set M68000 HIPS

Branch Access VAX 360 PDE-10 -

Table 2-2: Condition code operations

- Condition codes are difficull to implenient primarily becduse they

are an irregular structure. As opposed to registers, where the -

references of updates of objects are. exphcn, condition codes are
updated as a side-effect. In architectures where some but not all
instructions set the condition code, additional complexity is
- introduced in decoding and condition code control. Because of
these irregularities, implementing condition codes is particularly
painful on a heavily pipelined machine. With architectures which
set the condition code heavily (such as the VAX), the hardware
can assume that all instructions set the condition codg, then the
hardware would force branch instructions to wait until the pipe
has cleared. This may result in some performance loss when the
instructions immediately before the branch do not affect the
condition code: The implementation becomes substantially more
difficult when the set of instructions that affect the condition code
is Iarge but not closc to the set of all instructions (as in the
360/370). In this case, a significant amount of hardware is needed
to determine whether condition codes are affected by a particular
instruction. Because fewer instructions set the condition code,
when dealing with a branch instruction, -a designer is tempted to
find' the last instruction that affected the condition code.
However, because the set of instructions that affect the condition
code may be nontrivial to determine, finding the last instruction is
extremely difficult.

2.3.1. Conditional control flow breaks

Typically, condition codes are used to-implement conditional
control flow breaks. A compare instruction (or other arithmetic
instruction) is used to set the condition code; a conditional branch
instruction uses the condition code 1o determine whether to take a
branch The ‘most obvious dlsadvantage of this approach is that
wo instructions are. required to effect the usual compare and
sranch. This is not 2 major disadvantage since a single ‘compare
" and branch instruction would take longer to exccute and. more
instruction bytes to encode. From a hardware: implementation
- viewpoint, it is also useful to know the branch condition
explicitly.. ' '

There are two primary Aypothethical advantagcs for condmon
codes:
1. They save instructions by allowing branches to use the
resulls of computations that are already done,

2. Condition codes model threc way (€,>, =) branches.
Table 2-3 contains empirical data that shows that the number of
instructions saved by condition codes is so small as to be
essentially uscless. Threc way branches'. arc a Fortran anomaly
introduced into the language because of the architecture of the
704. In any event, we belicve that the vast majority of the three

way branches in Fortran contain only two branch destinations. '

- To implement conditional branches on a condition code machine, -

first the condition, and then is set then a conditional branch is
used. Most architecturcs set condition codes by ALU operations
only; the VAX sets the condition code on ail move operations.

MIPS and a few other architectures such as the Cray-1 and the -
PDP-10 implement conditional contrdl flow using compare and
branch instructions. In MIPS, all instructions including the
compare and branch instructions take the same amount of
execution time. Thus, the comparison is to some extent frée. In
cases where explicit comparisons (the dominant case : see Table
2-3) are needed on’condition code machines, MIPS’ approach
actually saves instructions.

MIPS supports conditional control flow breaks using a oompare .
and branch instruction with one of 16 possible comparisons. The
16 comparisons include both SIgncd and unsxgned arithmetic (e. B
X<Y) as well as logical (e.g., X and Y = 0) compansons Most
condmonal control flow. breaks can be implemented with one
comparison and the dlsplacemcnt(base) branch address available
in this instruction. This, combmed with the fact that compare and
branch instruction executes in one data memory cycle (as do alt
other instructions), makes thi§ instruction a very fast-means of
implementing conditional control flow breaks. :

Compares without condition codes 2469

Compares saved using condition codes 1.1%
set by operators only

Compares saved using condition codes 733
set by operators and moves

Hoves used to set condition code 706

Savings for condition codes set by 1.1%
operators and moves

‘Table 2-3: Use of condition codes

2.3.2. Evaluating boolean expressions
Jandling boolean expressions with numeric compansons can be
difficult i in many archxtectures For example, consnder

" Found := (Rec = Key) OR (I = 13). »
where each variable except Found is an integer. On a oondltmn .
code machine where the condition is accesslble only ‘by
conditional branches (e.g., the VAX), typical code sequences are
given in Figure 2-1. Clearly, carly-out.evaluation is much better.
mﬂy-out‘ evaluation is frequently usable cither because the
language explicilly permits it or because the absence of side
effects makes it possible. The high percentage of branches in this

~code is perhaps the most disturbing point. The cost of branches

on modern. plpelmed architectures is far more than the cost of a
typical compute-type instruction.

Ful)_Evaluation Early-out Evaluation

str O,rt str 1,Found

comp Rec, Key . comp Rec,Key
© bne L : beq D

str 1,r1 ' .- comp 1,13
L:conp I,13 baq O

bne D | ‘str 0,Found

str 1,r1 oD

‘Distr rl,Found

8 static instructions 6 static instructions

2 branches 2 branches
" Average of 7 1nstruct1ons ‘Average of 4.25 imstructions
executed _executed

A]ways executes 2 branches Executes one branch on average

Figure 2-1. Evaluating boolean expressions with condition codes

An improvement over this can be gained by including instruc-
tions that conditionally set valucs based on the condition codes
(as on the. M68000). With such instructions, the improved code
sequences- in Figure 2-2 can be used. Allhough the average
dynamic instruction count is slightly higher for this instruction
sequence, it would execute faster on almost all machines since it
has no branches. ’

comp Rec,Key

seq Found ; R1 is set to bit that represents equal

comp I,13 .

seq rt -
or ri,Found

§ static/dynamic instructions
Ho branches

Figure 2-2: Boolean expression evaluation using conditional set

On an architeciure without condition codes some other method is
neéeded to set the values. One approach is to duplicate the code
used for a condition code machine without a conditional set
.instruction. Instead, MIPS provides 2 powerful Set Conditionally
instruction with the same 16 comparisons found in conditional
branches. This instruction performs a comparison, and sets a
register to zero or one basad on the result. Using this instruction,
the code sequence for our example is shown in Figure 2-3.

seq Rec,Key,rl

. seq I,13,92
or rl, r2,Found

3 static and dynamic 1nstruct10ns
No branches

Figure 2-3; Boolean expression evaluation using set conditionally

Ini addition to boolean expressions that are assigned to variables,
boolean expressions appear in conditional tests. In this case, carly-
out evaluation will result in similar numbers of instruction counts.
The conditional set approach will be superior only in the case of
complex expressions {more than one boolean opérators).

Average operators/boolean expression i.ee'
Boolean expressions ending in jumps 80.9%

Boolean expressioas ending in stores 19.1%

Table 2-4: Boolcan expressions

Table 2-4 shows the distribution of boolean expression types for
our Pascal data set. Table 2-5 shows the number of opcratwns
needed per boolecan operator to evaluate boolean expressions
usmg different architectural support. ‘

tompara/Register/Branch jnstructions per boolean operator
Static Dynami c .

Set Conditionally . Cans0 270
instruction

€C and set condittona11y 27370 2/3/9

based on CC
Only CC and branch, - 27272 2/2/2
) full evaluation '
Only CC and branch, 2/0/2 2/0/1.B6

eariy-out

Table 2-5: Operations necded to evaluate a boolean expression

Without a conditional sel operation, evajuation of a boolean
expression to be stored will require an extra assignment. When
cevaluating a boolean expression for a conditional branch, the
branch instruction will be part of the normal evaluation in the .
case of a condition branch-branch cvaluation but will be required
in addluon to the cvaluation when conditional set evaluation is
used. Usmg the data from: previous tables, Table 2- 6 shows the

- effectiveness for conditional set assuming that reglster operations
take time 1, compares take time 2, and branches lake time 4. -

Type : Operations - Full tarly-out
Eyaluatioq
Store Set conditiona11ylno‘CC' 9.3 - 9.3
store - cc/conditional set 15.9 14.9
" Store €C with only branch 27.9 ‘ 20.5
Jump Set conditionally/no CC 13.3 133
Jump CC/conditional set 18.9 18.9
Jump ' CC-witAh‘on‘ly branch 26.9 19.5
Total Set conditionally/no CC 12.6 12.5 .
Total - CCIcqnditional set 18.Q 18.90
Total CC with only branch 26.9 19.7
Improvement itonditiona? set/Cé .33.0% 8.6%
.Improvement Set conditionally ‘ 53.5% 36.5%

Table 2-6: Cost of evalualing boolcan expressions

-2.3.3. Overflow- and multiple precision arithmetic -
In a machine with condition codes, overflow bits may necd to be

- explicitly tested to trap to exception handlers, as is required on

the M68000. This results in significant performance degradation
if each result is tested via conditional traps, or a loss in reliability
if 1o or fow tests arc made. Other machincs trap automatically
via hardware mechanisms. MIPS (aps if overflow detection is
cnabled and stores the trap type in a surprise register. This is
dlscusscd in Brcatcr detail in Section 3, Systems Support.

Carry bits are mainly used for multiprecision arithmetic. This is
most important for § and 16-bit machines and to a lesser degree
for larger tachines without floating point hardware. MIPS is in
the second category. For intensive floating point applications, the

use of a numeric coprocessor such as the Intel 8087 is envisioned.

For more common occasional use, multiprecision arithmetic can
be synthesized with 31 bit words. This. does not cause problems
unless precisions of 2w-1, 2w, 3w-2,... bits (where the wordsize is
w)are required. Multiprecision numbers are usually smaller than
an integral multiple of the wordsize, such as fractions in
doubleword foating point numbers.

3. Architectural Support for Systems

Central processors are usually only one component of a
computing system that includes memory, mass storage, network
subsystems, and pérhaps other central processors. The archi-
“tecture of the central processor should assist its integration into
such systems. Since multiprocessing is a major component of all
modern computing systems, the processor architecture should
permit reliable impleméntation of multiprocessing by efficiently
supporting:

e Memory management: virtual memory support with
protected address spaces (the address spaces of a process
should be protected from unauthorized access by other
processes).

o Context switching: the processor should correctly save the
state of a process when an exception occurs.

Memory management can be supplied entirely by external
hardware for some applications. However, architectural support
by the central processor is needed if the address space of a process
is not fixed at the beginning of execution, for example, if stacks
are allowed to grow into previously unallocated memory, or if
demand paging is desired. Unless the state of the CPU is properly
saved when a memory fault occurs, restarting an instruction
following a fault may be difficult to do reliably. For a load/store
architecture, this state saving problem is minimal; a faulting
instruction can simply be re-executed. By contrast, processors
with autoincrement addressing modes must dea! with the problem
of exactly when an address register is modified as a side effect of a
memory reference.)

Context switching can occur for several reasons, including.

‘memory faulls, -external interrupts, arithmelic exceptions, or
syslem calls. The cost of a context switch is the time required to
save the state of a process plus the time to select a new process as
determined by the cause of the interrupt. The major portion of
the process state for a general register machine is its register set.
The time required to save the registers can be reduced by
allowing cach process access to only a subset of the registers; this
technique is used by processors with multiple register banks or
more recently by RISC with overlapping regislcf banks. In
addition lo saving processor state, the processor must execute the
appropriate interrupt scrvice routine. Usually this routine is

selected from a table indexed by a small integer that represents
the cause of the interrupt.

An alternative architectural approach is to explicitly include the
reason for an interrupt, which we term the surprisc code, as part
of the statc of the machine. The surprise code contains two parts.
The processor supplied part contains information about the
pipestage that caused the interrupt and the type of interrupt.
Surprisc codes can indicate page faults, internal traps (c.g
arithmetic overflow), external interrupts (causcd by peripheral
devices), and internal traps raised by user instructions. The
information part of the surprise code is supplied by the
interrupting instruction or external device. It can be used to
supply additional information about the reason for the interrupt.
In this scheme, all traps, interrupts, and faulls are handled
orthogonally.
There are scveral advantages to this approach:
@ Because all interrupt types are handled in the same maaner
(with the possible addition of turning off writcs to memory),
the hardware is substantially simplified.

® A single central interrupt service routine can interpret the
surprise code and dispatch to the required subroutine. This
code, common to all interrupt service routines, can be
included in the central service routine. In MIPS, for
example, the central service routine would save the
addresses of the three instructions currently being executed
and some or ali of the general registers, then adjust the
privileged state of the CPU if necessary.

© The surprise code can be fairly large and its interpretation
can be performed by software. Since the surprisc code is a
part of the machine state, it can be examined by interrupt
service routines, and a single routine can deal with a'variety
of interrupts. Processors using vectored interrupts can often
jump to a common interrupt service routine after first
loading a register with an interrupt specific value.

® A fixed size table of addresses of interrupt service routines
is not needed.

. @ Extraneous interrupis, for example from input/output
devices that the operating system does not know about, can
easily be disregarded.

The chief disadvantage of the surprise code approach is that it is
slightly slower than using a direct interrupt vector. Several
additional instructions may be necded to interpret the surprise
code. Morcover, since it is part of the state of the machine, the
surprise code must be saved whenever an interrupt occurs, if
nested interrupts are possible. In MIPS, the surprise code is part
of the program status word, which includes the privilege state and
arithmetic overflow trap cnable, so that no significant additional
cost is incurred for saving the surprise code.

4. Compiler support for fast architectures
Compilers can help create speedier architectures by relaxing their
requirements on the instruction set. For example, consider an
instruction to perform function F that is fairly complicated with
tespect to its demands on the hardware. The operation F may bea
perfectly natural instruction in terms of a varicly of source
languages and compilers. However, incorporating F as an
instruction in the architecture may be a bad decision for several
reasons:
1. When F is implemented, it may be slower than a custom
tailored version of F, which is built rom simpler instruc-
tions.

2 When F is added to the architecture, all the other
instructions may suffer some performance degradation
(albeit small in most cases). This phenomenon has been
calied the “n+1 instruction"phenomenon and has been
observed in several VLSI processor designs {10, 5}.

Of course, whether or not F7 slows down the overall performance
is dependent both on an implementation of the architecture and
on the frequency of use of F. Instances of this type of behavior
can be seen in the VAX 11/780. For example, the Index and
CallS instructions in most instances are slower than obvious
simpler code sequences 4, 12] -

A clear case can be made for climinating more complex
instructions, where the speed benefits and usefulness of F are
dubious. By advancing the case one step further, one can argue
that even “natural” instructions should be examined for their
usefulness, and performance when measured against possibly
faster, customized sequences of simpler instructions.

4.1. word-addressed machines

Most newer computer architectures, from micros up to large
machines, have supported some sort of byte addressing. The
primary reason for this is that character and logical data is often
handled as bytes (at least when it is in an array) and byte
addressing simplifies code generation and makes the machine
faster.

While it is truc that byte addressing makes code gencration
simpler, it is not at all clear that it has a positive influence on
overall performance. Memory interfaces that must support byte
addressability as well as word (and probably- hatfword)
addressability are significantly more complicated. Qur estimates
arc that a byte addressable memory interface would add from 15
to 20% additional overhead to the critical path of the MIPS VLSE
processor. Bccause many processors assume that operand fetch
times are constant (ignoring issues such as caches), all operand
fetches will pay the cost of this overhead. Most of this overhead
results from the necessity of doing byte -insert or extract
operations (we assume only a single memory access is needed and
do comsider the complexity of cach extra read neceded to

implement byte stores). Other overhead comes from the added.

control complexity nceded to implement byte addressing. If all
instructions have byte and halfword formats to preserve

orthogonality, the size of the control structure may be greatly
increased. The overhead cstimate that we give below ignores the
cost associated with this extra- hardware (i.e, the control
hardware) and the resultant larger chip area, which will cause
additional performance degradation.

An alternative is not to include byte addressability. The
performance impact of such a choice depends on three factors:
1. The estimated cost of supporting byte addressing in terms
of added operand fetching time for ail operands.

2. The percentage of occurrences of byte-sized objects.

3. The cost of performing the byte operations on a word-
addressed machine.
We will address the latter two issues. Tables 4-1 and 4-2 contain
datz on storage refercnces in terms of loads and stores. Table 4-1
allocates all objects as words unless they occur in a packed
structure. Table 4-2 allocates all characters and booleans as bytes.
Block movements of data are not included as any either byte or
word references. The source for the data is a collection of Pascal
programs including compilers, optimizers, and VLSI design aid
software; the programs are reasonably involved with text
handling and little or no compute. intensive (e.g. floating point)
tasks are included. “The global activation records of the word-
based allocation version average 20% larger.
A1) data references -~ 71.2 % loads, 28.7 X stores
8 bit loads 2.6 % .
32 bit loads or larger 68.6 %
2.6 %
6.2 %

8 bit stores
3z bit stores or larger 2

Character references =~ 66.7 % loads, 33.3 X stores
8 bit character loads 14.7 %
32 bit character loads 52.0 %
8 bit character stores 21.5 %
11.8 %

32 bit character stores

Table 4-1: Data reference patterns in word-allocated programs

A1l data references - 71.2 % loads, 28.7 % stores
8 bit loads 6.6 %
32 bit loads or larger 64.6 %
8 bit stores 5.9 %
32 bit stores or larger 22,9 %

Table 4-2: Data reference patterns in byte-allocated programs

The major observations we can make from this data are
® Objects altocated as' full words dominate byte-allocated
objects.
o Character reference patterns have a much higher percentage
of stores than that of non-character references.
@ When unpacked character data is allocated in words, most
of the data references are to the unpacked characters.
To evaluate the effectiveness of byte processing using a word-
addressed machine, we necd to examing two questions:
1. How can the compiler help us?
2. What instructions are available for extracting and isolaling
words from bytes?

The compiler can help by attempting to transform character at a
{ime processing to word at a time processing. Since many of the
operations that deal with characters concern copying and
comparing strings, the potential benefits are substantial. This is
an interesting code optimization problem whose benefils and
difficultics are nonobvious.

To explore the cost of. character processing with only word
- addressing, we will look at the instructions in the MIPS

instruction sct and the typical code sequences. Given these and

estimates of the overhead associated with byte addressing
support, we can get a rough performance comparison.

Although MIPS docs not have byte addressing, it has special
instructions for byte objects in packed arrays. Packed byte arrays
are typically accessed via a byte index from the beginning of 2
word-aligned. array; byte pointers can be regarded as the special
case where the array is located at memory location 0.

MIPS has four instructions to support byte objects: load and store
base shifted and insert and extract byte operations. Load and
store base shifted can be used for accessing packed arrays of 2**n
bit objects. where 0<n<15 (i.e, bits through words). These
instructions take a packed array pointer consisting of 2 32-(5-n)
bit word address in the high order bits and a packed array index
in the low order n bits. This word is loaded/stored by shifting the
packed array pointer n bits and reading/writing from that
location as in every other load/store.

Bytes are accessed with insert/extract instructions: These insert or
extract the byte specified by the low order two bits of a byte
pointer. In the case of extract the byte pointer may be anywhere;
for insert the byte pointer must be moved to a spectal register.

Loading a byte can be performed in two steps: first load the word

“conlaining thé byte, then extract the byte from one of four
locations within the word.

1f a byte pointer is in R0 (the high order 30 bits contain a word’

address),then the followmg MIPS code sequence is equivalent to
a load byte instruction:

sword at (r0/4) into ri

18 (r0>>2),r1

;extract byte from ri into rl
xc ro,rl,rl

Thus, one memory access instruction and one ALU instruction
‘are required to fetch a byte.

Storing into a byte array requires between two and three steps:
1. Fetch into a register fhra word that contains the destination
byte (this step is often not needed because the word is in a
register).

2. Replace the desired byte within the word register with the
source byte.

3. Store the updated word into memory.

" With the aid of an inscrr character instruction, a MIPS code
sequence for store byte becomes

sword at (r0/4) into r2

1d (r0>>2),¢2

1rl into byte selector 1o
mov ri,lo :

Byte addressing

:low order byte of r3 into r2
ic to,r3,r2

sreturn word in memory

st r2,{rg>>2}

This code sequence utilizes 1-2 memory reference instructions
and two ALU instructions.

The cost of addressing operations using byte-addressed MIPS
with/without overhead (15%) and using MIPS byte insert/extract
instructions is shown in Table 4-3. We assume that the cost of an
instruction is cqual to thc number of clock cycles needed to
execute that instruction (or instruction picce). We also assume
that non-array data car be accessed with the displacement field
present in load and store instructions. Because word
displacements are larger, word addressing has an advantage when
displacements are too large for the byte-addressed case.

" Operation Cost with Cost with Cost with

byte overhead MIPS
uperations operations

. load from array 4 4.6 - 6

store into array 4 4.6 8-12
load byte 6 6.9 .8

store byte 6 6.9 10-18
Toad word 4 4.6 4
store word 4 4.6 . 4

Table 4-3: Cost of various byte operations

Operations Word- | Byte-
allocated allocated
cost cost
byte loads on MIPS .156 L4768
byte stores on MIPS .208-.312 .486~.,75
word loads on MIPS 2.744 2.584
word stores on MIPS ~1.048 .916
Total loads and steres 4.156-4.26 4.162-4.426
on MIPS
byte loads onm byte- .12 .396
" addressed MIPS
byte stores om byte- .12 .347
addressed MIPS
word loads on byte- 3.202 St 2,972
addressed MIPS
word stores on byte- 1,208 1.083

addressed MIPS

_Total loads and stores 4.647 4.768

on byte-addressed MIPS

9% - 11.8% 7.7 - 14.6%
performance penalty .

Table 4-4: Cost of byte and word-addressed based architectures

Table 4-4 analyzes the cost of word based addressing versus byte
based addressing. The cost of addressing is computed (rom the
cost of cach type of addressing times its frequency Because we
ignore the cxtra addressing range of word offsets, use 2 minimum
overhead factor, and ignore the extra read required to implement
byte stores, these figures should be regarded as minimum
improvements attributable to word based addressing. When ail
the factors are considered, improvements in the range of 20% for

word-allocated programs and 23% for byte-allocalcd should be
expected.

. 4.2. Applying better compiler technology

" Another approach to faster, cheaper architectures is to require
more software support in the compiler. This is an attempt to the
shift burden of the cost from hardware to softwarc. The shifting
of the complexity from hardware to software has several major
advantages: »

@ The complexity. is paid for only once during compilation.
When a user runs his program on a complex architecture,
he pays the cost of the architectural overhead each time he
runs his program. »

e 1t allows the concentration of energies on the software,
rather than constructing a complex hardware engine, which
is hard to design, debug, and efficiently utilize. Software is

not necessarily easier to construct, but VLSI-based imple-.

mentations make hardware simplicity important.

Naturally, when attempting to place more emphasis on the

software aspcets, the overall performance must be improved. We
also hope to improve the cost effectiveness by using compiler
technology that is more powerful but not much more complex.

4.2.1. Software-imposed pipeline interfocks
The interlock hardware in a pipeline processor normally provides
these functions: '
o If an opérand is fetched from memory, the interlock
mechanism delays subscquent instiuctions that attempt to
reference the data until the operand is available.

® The pipeline is cleared after the exccution of a flow-control
instruction. If a branch is taken, the interlock mechanism
guarantces that the next instruction executed is the
instruction at the destination of the branch.

® Asithmetic operations may require different amounts of
time to cxccute, e.g., multiply and divide. The interlock
hardware will prevent the next instruction from cxecuting if

there are source-destination or destination-source

dependcencies.
We will discuss a software-based implementation of the first two
functions and present an algoiithm for the first function and some
empirical data on its performance.

In a processor with interlock hardware that provides the functions
listed above, pipelining can be scen as an optimization imple-
mented by hardware. Basically, the hardwarc will execute the
program faster, subject to the interlocks which prevent illegal
optimizations. This approach attows the compiler (or other user of
the machine-level instruction sct) to make simple assumptions
~about the éxecmi_on of individual machine instructions.

An alternative approach is to move these optimizations from

hardware to software. In that casc there is no hardware interlock
mechanism. Instead, the funclions described above have to be

provided by software, cither by rearranging the code sequence or

by inserting no-ops. This approach has the potential of producing
code which exccutes faster, at the expense of the additional effort
required to reorganize the instruction stream. no-ops will only
explicitly de!ayA the execution as compared to the invisible delays
imposed by the hardwarc in an architecture with interlocks.

Such a reorganization scheme makes use of knowledge about the
interdependencies of the individual instructions. The techniques
developed for code optimization can be adopted to handle the

‘requirements of the reorganization algorithms. The MIPS

architecture employs the approach outlined here; there are no
hardware interlocks. The current scheme provides the reorgan-
jzation as a post-processing of the code generator’s output This
reorganizer performs scveral major functions: '
1.1t takes the pipeline constraints into. account and
reorganizes the code 1o avoid interlocks when possible, and
otherwise inserls no-ops.

2. It packs instruction pieces into one 32 bit word.

3. It assembles instructions.
Thus, the reorganizer also works on programmer-written
assembly language code and reorganizes, packs, and assembles it.

Since the code reorganization process is part of every compilation,
we must concentrate on solutions which have acceptable run-time
performance and still produce good resulis in most cases. Finding
an optimal code scquence is very expensive, as the problem is
NP-hard [6]. All code rcorganization is done on a basic block
basis. The algorithm is discussed in detail in [6].

‘The basic steps in the algorithm are
1. Read in a basic block and-create a machine-lcvel dag that
represents the dependencies between individual instruction
pieces.

2. Given the sct of instructions generated so far, determine
" gefs of instructions that can be generated next.

3. Eliminate any scts that cannot be started immediately.

4, If there arc no sets left, emit a no-op and return to step 2.
Otherwise, choose from among the sets remaining.
The choice of the next instruction 1o be scheduled (step 4 above)
is made heuristically from the sct of legal instructions. Typically,
an instruction that fits in a hole in a nonfull instruction is
preferred: this provides the instruction packing.

When determining which scts of instructions may be processed,
the reorganizer must examinc both the interlocks from carlier
instructions and vegister usage in parallel dags. The use of
registers in paratlel dags partially determines what set of code
reotderings are possible. The algorithm must also avoid
reordering loads and stores that might be aliased.

All branches in MIPS are delayed branches with a single
instruction delay. If instruction /is a branch to L and the branch
is taken, then the sequence of instructions executed is i+, L
There are three major schemes for dealing with delayed branches
of delay n: _)

1. Move n instructions from before the branch (ill after the

branch.

2. If the branch is a backwards loop branch, then duplicate the.

first n instructions in the loop and branch to the n+1
instruction.

3.If the branch is conditional, move the next n secquential
instructions so they immediately follow the branch.

Of course, if the branch is conditional, the outcome of the test
must not depend on any of the moved instructions. Often the
front end of the compiler is able to handle delayed branches
better than the reorganizer; in this case it emits' a pseudo-op
which tells the rcorganizer that this sequence is not to be touched.
The branch delay optimization algorithm and its performance are
discussed in {7).
Figure 4-1 shows how a code fragment is affected by reorgan-
ization. In this case, it is assumed that 12 is "dead” outside of the
section shown, therefore it can be modified even if the branch in
line 2 is taken. Note also that the store instruction is not moved as
it effects memory.

Legal Code Recrganized
with_No~-ops Code

1d 2{ap), 0 1d 2(ap), ro
ble r0, #1, L11 bie r0, #1, L11
No-op No-~op

Ho-op sub #1, 0, r2
sub #1, rQ, 2 st r2, 2{sp)
st r2, 2(sp)

1d 3(sp}, rb bra L3

add r6, 0 14 3(sp}, r5 add r5, r0
add #1, r4- add #1, r4

bra L3

L3: ... L3: ...

Figure 4-1: Reorganization, packing, and branch delay

To show the effectiveness of these optimizations, we ran versions
of a.program that does reorganization, packing, and branch delay
elimination of three input programs. The input programs consist
of an implementation of computing Fibbonacci numbers and two
implementations of the Puzzle benchmark {2]. All the programs
were written in C and compiled to instruction pieces by a version
of the Portable C Compiler. The data in Table 4-5 shows the
improvements in static instruction counts, .

Optimization Fibbonacci Puzzle 0 Puzzie 1
Hone (no-ops 63 843 1219 |
inserted)

Reorganization 63 834 1113
Packing 85 776 992
Branch delay 60 634 791

Total

Improvement 20.6% 24.8% 35.1%

‘Fable 4-5: Cumulative improvements with postpass optimization

5. Conclusions

We have argued that the most effective performance can be
obtained by a design methodology that makes tradeofls across the
boundaries beiween hardware and software, This approach is just
the opposite of some architectures that advocate extensive
hardware support. Several experimental projects, ihcluding MIPS
and RISC, are persueing the goal of a simplified hardware
implementation.

We cxamine the issue of instruction set design to support the,
execution of compiled code. As opposed to “language-oriented”
developments such as stack machines, we advocate two major
alterations: the use of load/store architectures and the absence of
condition codes. Both of these design alternatives have two major
advantages: simpler hardware implementation, and potentially
higher individual instruction efficiency.

Second, we discuss the issuc of supporting the construction of
systems by providing the neccessary primitivé “functions in
hardware. We note that in many cases, the minimum functionality
is not available. This limits the type of design approach that can
be used. We consider the complete support of page faults and
interrupts in detail, and discuss the disédvantages of approaches
that provide extensive sysiem support services.

The issue of word-based versus byte-based addressing is explored.
Based on a set of empirical data, we conclude that for many
applications architectures will have higher performance with
word addressing. Word based addressing gains its advantages
from two primary poiats: it has a lower overhead associated with
each fetch or store, and word references occur much more
frequently than byte references. To make a word based approach
feasible, special support for accessing bytes (as in the MIPS
instruction sct) are needed. E

Lastly, we discuss approaches that rely extensively on improved
compiler technology. The compiler is taken into account both in
terms of the instruction set and in temms of radically simplified
hardwarc designs. The software imposition of interlocks is
presented as an example of this approach.

We explore the concept of simultaneously dealing with the
hardware implementation, systems requirements, and the compi-
ler technology. Following such an approach may lead to a
reduction in hardware, as opposed to additional hardware
support. Whether such an approach is effective and. cfficient
depends on a wide varcly of factors, including resulting
improvements in hardware performance, the uscfulaess of the
feature, and the alternative cost without “hardware support.”
Using several specific examples, we have shown that such
fradcoffs can produce significant improvements in overall
performance.

References

1. Aho, A.V. and Ullman J.D.. Principles of Compiler Design.
Addison Wesley, Menlo Park, 1977. '

2. Baskett, F. Puzzle: an informal éompute bound benchmark.
Widely circulated and run:

3. Chailin, Auslander, Chandra, Cocke, Iopkins, Markstein.
Register Allocation by Coloring. Rescarch Report 8395, IBM, ,
1981.

4. DEC VAX11I Architecture Handbook. Digital Cquiment
Corp., Maynard, MA., 1979.

5, Hennessy, J.L., Jouppi, N., Baskett, F., and Gill.1. MIPS: A
VLSI Processor Architecture. Proc. CMU Conference on VLSI
Systems and Computations, October, 1981.

6. Hennessy, J.L. and Gross, T.R. Code Generation and
Reorganization in the Presence of Pipeline Constraints. Proc.
Ninth POPL Conference, ACM, January, 1982.

7. Hennessy, L.L. and Gross, T.R. Optimizing Branch Delays.
Computer Systems Lab., Stanford University, 1981.

8. Johnson,$.C. A 32-Bit Processor Design. Tech. Rept.
Computing Science # 80, Beli Labortories, Murray Hill, April,
1979.

9. Lunde, A. "Empirical Evaluation of Some Features of
Instruction Set Processor Architectures.” CACM 20, 3 (March
1977), 143-152.

10. Murphy, B.T. and Molinelli, 1.J. A 32-Bit Single Chip
CMOS Microprocessor. Seminar given at the Integrated Circuits
Laboratory, Stanford University, May 22, 198L.

11. Patterson, D.A. and Sequin C.H. RISC-I: A Reduced
Instruction Set VLSI Computer. Proc. of the Eighth Annuat
Symposium on Computer Architecture, Minneapolis, Minn.,,
May, 1981.

12. Patterson, D.A. and Ditzel, D.R. "The Case for the Reduced
Instruction Set Computer.” Computer Architecture News 9,3
{October 1980).

13. Shustek, L.J. Analysis and Performance of Compme}
Instruction Sets. Ph.D. Th., Stanford University, May 1977. Also
published as SLAC Report 205.

11

