gli"-’

® @r\a

COS 318: Operating Systems

Virtual Machine Monitors

Andy Bavier

Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

gli"-’

Introduction

Have been around since 1960’s on mainframes

e used for multitasking
e Good example — VM/370

Have resurfaced on commodity platforms
e Server Consolidation

e \Web Hosting centers

e High-Performance Compute Clusters

e Managed desktop / thin-client

e Software development / kernel hacking

® @r\a

gli"-’

Why do we care?

® @r\a

Manageability

e Ease maintenance, administration, provisioning, etc.
Performance

e Overhead of virtualization should be small

Isolation
e Activity of one VM should not impact other active VMs
e Data of one VM is inaccessible by another
Scalability

e Minimize cost per VM

gli"-’

Virtual Machine Monitor (VMM)

Resides as a layer below the operating system
Presents a hardware interface to an OS

Multiplexes resources between several virtual machines
(VMs)

Performance Isolates VMs from each other

Jire

VMM Types

G

guest guest guest
application application application
guest guest guest
application application application guest operating system
guest operating system virtual-machine monitor (VMM)
virtual-machine monitor (VMM) host operating system
host hardware host hardware
Type I VMM Type I VMM

gli"-’

Virtualization Styles

Fully virtualizing VMM

Para- virtualizing VMM

® @r\a

VMM Classification

Fully-virtualized

Para-virtualized

gli"-’
a&%

n f 1

Type | Type Il
VMware ESX VMware Workstation
Xen User Mode Linux

gli"-’

VMM Implementation

Should efficiently virtualize the hardware
Provide illusion of multiple machines
Retain control of the physical machine

Subsystems
Processor Virtualization
/O virtualization
Memory Virtualization

® @r\a

gli"-’

Processor Virtualization

Popek and Goldberg (1974)

® @r\a

e Sensitive instructions: only executed in kernel mode
e Privileged instructions: trap when run in user mode

e CPU architecture is virtualizable only if sensitive
instructions are subset of privileged instructions

e \WWhen guest OS runs a sensitive instruction, must trap to
VMM so it maintains control

gli"-’

Xx86 Processor Virtualization

x86 architecture is not fully virtualizable

e Certain privileged instructions behave differently when
run in unprivileged mode

e Certain unprivileged instructions can access privileged
state

Techniques to address inabillity to virtualize x86

e Replace non-virtualizable instructions with easily
virtualized ones statically (Paravirtualization)

e Perform Binary Translation (Full Virtualization)

10

® @r\a

/0O Virtualization

Issue: lots of I/O devices

Problem: Writing device drivers for all I/0 device in
the VMM layer is not a feasible option

Insight: Device driver already written for popular
Operating Systems

Solution: Present virtual 1/0O devices to guest VMs
and channel I/O requests to a trusted host VM
running popular OS

g 11

/0O Virtualization

VM1 VM2 VM3 DomO VM2 VM3
Guest OS Guest OS Guest OS : Guest OS Guest OS
\ . s\ / DeVICG \ TR J
- - Driver OS
VMM + Device Drivers |] VMM
(Physical Devices) (Physical Devices)

—— O = O—

Memory Virtualization

Traditional way is to have the VMM maintain a shadow of
the VM's page table

The shadow page table controls which pages of machine
memory are assigned to a given VM

When guest OS updates its page table, VMM updates
the shadow

13

5“"-’
® ar\a

gli"-’

VMware ESX Server

Type | VMM - Runs on bare hardware

Full-virtualized — Legacy OS can run unmodified on top of
ESX server

Fully controls hardware resources and provides good
performance

14

Jire

gli"-’

ESX Server — CPU Virtualization

Most user code executes in Direct Execution
mode; near native performance

Uses runtime Binary Translation for x86
virtualization

e Privileged mode code is run under control of a Binary
Translator, which emulates problematic instructions

e Fast compared to other binary translators as source and
destination instruction sets are nearly identical

15

® @r\a

gli"-’

ESX Server — Memory Virtualization

Maintains shadow page tables with virtual to machine
address mappings.

Shadow page tables are used by the physical processor

ESX maintains the pmap data structure for each VM with
“physical” to machine address mappings

ESX can easily remap a machine page

16

Jire

gli"-’

ESX Server — Memory Mgmt

Page reclamation — Ballooning technique

e Reclaims memory from other VMs when memory is
overcommitted

Page sharing — Content based sharing

e Eliminates redundancy and saves memory pages when VMs
use same operating system and applications

Jire

17

ESX Server- Ballooning

Etﬁ

inflate balloon
(+ pressure)

Guest OS /
deflate balloon
(— pressure)

s

Guest OS

may page out
to virtual disk

guest OS manages memory
implicit cooperation

Guest OS

may page in
from virtual disk

18

ESX Server — Page Sharing

o000
011010
110101 hash page contents , ...2bd806af
010111 —_
101100
VM1 VM 2 e UM 3
hint frame
mmne Hash: ...06af | ™.
- VM: 3 - ‘_
I PPN: 43f8 |
MPN: 123b |~ :\aaég
]
EA A 19
lﬂirmm'

Etﬂ

Real World Page Sharing

Total Saved
Workload Guest Types | MB | MB %

Corporate IT |10 Windows | 2048 | 673 | 32.9
Nonprofit Org | 9 Linux 1846 | 345| 18.7
VMware 5 Linux 1658 | 120 7.2

Corporate |T — database, web, development servers (Oracle, Websphere, IIS, Java, etc.)
Nonprofit Org — web, mail, anti-virus, other servers (Apache, Majordomo, MailArmor, etc.)
VMware —web proxy, mail, remote access (Squid, Postfix, RAV, ssh, etc.)

20

s

gli"-’

ESX Server — I/O Virtualization

Has highly optimized storage subsystem for networking
and storage devices

e Directly integrated into the VMM

e Uses device drivers from the Linux kernel to talk directly to the
device

Low performance devices are channeled to special “host”
VM, which runs a full Linux OS

21

® @r\a

/0O Virtualization

VM1 VM2 VM3 DomO VM2 VM3
Guest OS Guest OS Guest OS : Guest OS Guest OS
\ . s\ / DeVICG \ TR J
- - Driver OS
VMM + Device Drivers |] VMM
(Physical Devices) (Physical Devices)

—— O = O—

gli"-’

VMware Workstation

Type Il VMM - Runs on host operating system

Full-virtualized — Legacy OS can run unmodified on
top of VMware Workstation

Appears like a process to the Host OS

® @r\a

23

gli"-’

Workstation - Virtualization

CPU Virtualization and Memory Virtualization
e Uses Similar Techniques as the VMware ESX server

I/0O Virtualization

e \Workstation relies on the Host OS for satisfying 1/0
requests

e |/O incurs huge overhead as it has to switch to the Host
OS on every IN/OUT instruction.

24

® @r\a

gli"-’

Workstation — I/O Virtualization

® @r\a

VMM must be able to intercept all I/O operations
issued by the Guest OS

These are trapped by the VMM and emulated either in
VMM or VMApp.

Any access that interact with physical hardware have
to be handled by VMApp

I/O intensive workload performs poorly due to extra
host switches between the Host and the VMM worlds

25

Workstation — Virtualize NIC

s

ST

Virtual|NIC

VMM

"

Virtual Network Hub

(Host-Only)]

\Virtual NIC VMNet Driver

n [|
Virtual|NIC VMM Virtual [NIC VMM
[Virtual t!etwork Hub J
Host OS, [(Bridged)
VMDriver &
VMApp Virtual
VMNet Driver _Bridge

Hardware

Physical NIC

O 00
7]
=
@
=
Ll
©
3}
»
>
s
o
26

gli"-’

Xen

Type | VMM
Para-virtualized
Open-source

Designed to run about 100 virtual machines on a single
machine

Jire

27

gli"-’

Xen — CPU Virtualization

Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen
Processor Rings

e Guest applications run in Ring 3

e Guest OS runs in Ring 1

e Xen runs in Ring 0

® @r\a

28

Xen — Memory Virtualization(1)

Initial memory allocation is specified and memory is
statically partitioned

A maximum allowable reservation is also specified.

Balloon driver technique similar to ESX server used to
reclaim pages

29

5“"’
® ar\a

Xen — Memory Virtualization(2)

Guest OS is responsible for allocating and managing
hardware page table

Xen involvement is limited to ensure safety and isolation

Xen exists in the top 64 MB section at the top of every
address space to avoid TLB flushes when entering and
leaving the VMM

30

5“"-’
® ar\a

Xen — |/O Virtualization

Xen exposes a set of clean and simple device
abstractions

|/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rngs

Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

31

Fe
Jire

VMMs the only way to Virtualize?

+ Alternative: Container-based OS (COS)
e Eg., Solaris 10, Linux-Vserver, OpenVZ

Features VMM | COS
Multiple kernels v X
Administrative power (root) o/ o/
Manageability v/ v
Scalability v/ vv
Isolation vv v/

Efficiency v vv

gli"-’

PlanetLab (circa 2005) Usage

80
80

10

Jire

Niimher of R etimdeAf MAc

1- - C 'l'ﬁ'
Lo B | . &
A S —

Typical Node (2.4GHz, 1GB, 100GB disk)
~250-300 configured VM file systems on disk
40-90 resident VMs with = 1 process

5-20 active VMs using CPU

06/Mar

33

Container vs. Hypervisor Virtualization:
What is the Trade-Off?

gli"-’
e

Increasing Efficiency

n f 7

A Perfect Isolation &
100% Efficiency

Ligug SEI_iCn£< VSGNQ\b\

Windows BSD Jails
OpenVZ xen 3.0
Solaris 10 VMware

UML

w

I I I
Increasing Isolation

Physical Hardware

¥ e

*Stephen Soltesz, Herbert Potzl, Marc Fiuczynski, Andy Bavier, Larry Peterson.
Container-based operating system virtualization: A scalable, high-performance

alternative to hypervisors. EuroSys 2007
*Herbert Potzl and Marc Fiuczynski.

Linux-VServer: Resource-Efficient OS-level Virtualization, Ottawa Linux Sym. 2007

5{1@

Container Design

4)
GUEST 1
_ J

4 N\)
GUEST 2 | | GUEST n
_ VAN J

Physical Hardware

s

35

Feature Comparison

e
] [e H H]
0S & L o8 J U o8 J Os &
PN S e Y e
S s S
Hypervisor Container
Multiple Kernels V4 X
Load Arbitrary Modules V4 X
Local Administration (root) V4 v Al
Live Migration S v OpenVZ
Cross Version Migration X v Zap
o 36

Linux-VServer Overview

| Resource Control qust VM
| eMap Container to ((r0Ccess GS} Environment

*HTB for Network t
| «CFQ for Disk ~ N
% *Logical Limits ash)

*Processes (httpd
*Open FD

Scheduler
*Single Level

r &

*Token Bucket Filter
preserves O(1) scheduler

CUIITVATLU 11V 1'1ITV1 G

eUser IDs r Phvsical

*File system Barriers

Optimizations
File-level Copy-on-write

37

5“"-’
e

n f 1

gli"-’

COS vs. VMM Summary

COS=Linux-Vserver VMM=Xen
Performance

e COS 1.25x — 2x more efficient than VMM
Scalability

e COS scales ~10x better

|solation
e COS almost as good as VMM

® @r\a

38

gli"-’

Summary

Classifying Virtual Machine Monitors
e Type | vs. type ll
e Full vs. para-virtualization

Processor virtualization
Memory virtualization
/O virtualization
Containers vs. VMM

® @r\a

39

gli"-’

Review Topics

Jire

OS structure

Process management
CPU scheduling
Virtual memory

Disks and file systems
General concepts

40

gli"-’

Operating System Structure

Abstraction
Protection and security

Kernel structure

e Layered

e Monolithic

e Micro-kernel
Virtualization

e Virtual machine monitor

® @r\a

41

gli"-’

Process Management

Implementation
e State, creation, dispatching, context switch
e Threads and processes

Synchronization
e Race conditions and inconsistencies
e Mutual exclusion and critical sections
e Semaphores: P() and V()

* Producer & Consumer problems

« Scheduling problems
e Semaphore implementations

« Atomic operations: interrupt disable, test-and-set.

e Monitors and Condition Variables
e Deadlock detection and prevention

® @r\a

42

gli"-’

CPU Scheduling

Allocation -- Non-preemptible resources

Scheduling -- Preemptible resources
FIFO

Round-robin

STCF

Lottery

Jire

43

gli"-’

Virtual Memory

® @r\a

Mechanisms

e Base and bounds

e Paging

e Segmentation

e Page and segmentation
e [LBs

Page replacement
e LRU and clock
e Thrashing, working sets and WSClock

44

gli"-’

Disks and File Systems

Disks

e Disk behavior
e Disk scheduling
e RAID

e \olume manager
File access pattern and layout
Directories and implementation

File system performance
e Layout for performance
e Buffer cache

File system reliability
e Crash recovery and logging

NFS and NetApp file system
Deduplication file system

Jire

45

gli"-’

Major Concepts

Locality
e Spatial, temporal and working set

Scheduling

e Optimal algorithms know future, but we use past instead
Layering

e Synchronization, transactions, file systems, etc

Caching
e Translation look aside buffer, VM, buffer cache, etc

46

® @r\a

gli"-’

Operating System as lllusionist

Physical reality Abstraction
Single CPU Infinite number of CPUs
Interrupts Cooperating sequential
threads
Limited memory Unlimited virtual memory
No protection Each address has its own
machine

Organized and reliable

Raw storage device
storage system

Future courses
Networking: COS 461
Security: COS 429
Advanced OS: COS 518
Parallel Arch & Prog. COS 598A

47

Jire

