
COS 318: Operating Systems

Virtual Machine Monitors

Andy Bavier
Computer Science Department
Princeton University

http://www.cs.princeton.edu/courses/archive/fall10/cos318/

Introduction

 Have been around since 1960’s on mainframes
  used for multitasking
  Good example – VM/370

 Have resurfaced on commodity platforms
  Server Consolidation
  Web Hosting centers
  High-Performance Compute Clusters
  Managed desktop / thin-client
  Software development / kernel hacking

2

Why do we care?
 Manageability

  Ease maintenance, administration, provisioning, etc.
 Performance

  Overhead of virtualization should be small

  Isolation
  Activity of one VM should not impact other active VMs
  Data of one VM is inaccessible by another

 Scalability
  Minimize cost per VM

3

Virtual Machine Monitor (VMM)

  Resides as a layer below the operating system

  Presents a hardware interface to an OS

  Multiplexes resources between several virtual machines
(VMs)

  Performance Isolates VMs from each other

4

VMM Types

5

Virtualization Styles

  Fully virtualizing VMM

  Para- virtualizing VMM

6

VMM Classification

7

Type I Type II

Fully-virtualized

Para-virtualized

VMware ESX VMware Workstation

User Mode Linux Xen

VMM Implementation

Should efficiently virtualize the hardware
  Provide illusion of multiple machines
  Retain control of the physical machine

Subsystems
  Processor Virtualization
  I/O virtualization
  Memory Virtualization

8

Processor Virtualization

Popek and Goldberg (1974)
  Sensitive instructions: only executed in kernel mode
  Privileged instructions: trap when run in user mode
  CPU architecture is virtualizable only if sensitive

instructions are subset of privileged instructions

  When guest OS runs a sensitive instruction, must trap to
VMM so it maintains control

9

x86 Processor Virtualization

  x86 architecture is not fully virtualizable
  Certain privileged instructions behave differently when

run in unprivileged mode
  Certain unprivileged instructions can access privileged

state

 Techniques to address inability to virtualize x86
  Replace non-virtualizable instructions with easily

virtualized ones statically (Paravirtualization)
  Perform Binary Translation (Full Virtualization)

10

I/O Virtualization

  Issue: lots of I/O devices
 Problem: Writing device drivers for all I/O device in

the VMM layer is not a feasible option
  Insight: Device driver already written for popular

Operating Systems
 Solution: Present virtual I/O devices to guest VMs

and channel I/O requests to a trusted host VM
running popular OS

11

I/O Virtualization

12

VMM + Device Drivers VMM

Memory Virtualization

  Traditional way is to have the VMM maintain a shadow of
the VM’s page table

  The shadow page table controls which pages of machine
memory are assigned to a given VM

  When guest OS updates its page table, VMM updates
the shadow

13

VMware ESX Server

  Type I VMM - Runs on bare hardware

  Full-virtualized – Legacy OS can run unmodified on top of
ESX server

  Fully controls hardware resources and provides good
performance

14

ESX Server – CPU Virtualization

 Most user code executes in Direct Execution
mode; near native performance

 Uses runtime Binary Translation for x86
virtualization
  Privileged mode code is run under control of a Binary

Translator, which emulates problematic instructions
  Fast compared to other binary translators as source and

destination instruction sets are nearly identical

15

ESX Server – Memory Virtualization
  Maintains shadow page tables with virtual to machine

address mappings.
  Shadow page tables are used by the physical processor
  ESX maintains the pmap data structure for each VM with

“physical” to machine address mappings
  ESX can easily remap a machine page

16

ESX Server – Memory Mgmt
  Page reclamation – Ballooning technique

  Reclaims memory from other VMs when memory is
overcommitted

  Page sharing – Content based sharing
  Eliminates redundancy and saves memory pages when VMs

use same operating system and applications

17

ESX Server- Ballooning

18

ESX Server – Page Sharing

19

Real World Page Sharing

20

ESX Server – I/O Virtualization

  Has highly optimized storage subsystem for networking
and storage devices
  Directly integrated into the VMM
  Uses device drivers from the Linux kernel to talk directly to the

device
  Low performance devices are channeled to special “host”

VM, which runs a full Linux OS

21

I/O Virtualization

22

VMM + Device Drivers VMM

VMware Workstation

  Type II VMM - Runs on host operating system
  Full-virtualized – Legacy OS can run unmodified on

top of VMware Workstation
  Appears like a process to the Host OS

23

Workstation - Virtualization

  CPU Virtualization and Memory Virtualization
  Uses Similar Techniques as the VMware ESX server

  I/O Virtualization
  Workstation relies on the Host OS for satisfying I/O

requests
  I/O incurs huge overhead as it has to switch to the Host

OS on every IN/OUT instruction.

24

Workstation – I/O Virtualization

  VMM must be able to intercept all I/O operations
issued by the Guest OS

  These are trapped by the VMM and emulated either in
VMM or VMApp.

  Any access that interact with physical hardware have
to be handled by VMApp

  I/O intensive workload performs poorly due to extra
host switches between the Host and the VMM worlds

25

Workstation – Virtualize NIC

26

Xen

  Type I VMM
  Para-virtualized
  Open-source
  Designed to run about 100 virtual machines on a single

machine

27

Xen – CPU Virtualization

  Privileged instructions are para-virtualized by requiring
them to be validated and executed with Xen

  Processor Rings
  Guest applications run in Ring 3
  Guest OS runs in Ring 1
  Xen runs in Ring 0

28

Xen – Memory Virtualization(1)

  Initial memory allocation is specified and memory is
statically partitioned

  A maximum allowable reservation is also specified.
  Balloon driver technique similar to ESX server used to

reclaim pages

29

Xen – Memory Virtualization(2)

  Guest OS is responsible for allocating and managing
hardware page table

  Xen involvement is limited to ensure safety and isolation
  Xen exists in the top 64 MB section at the top of every

address space to avoid TLB flushes when entering and
leaving the VMM

30

Xen – I/O Virtualization

  Xen exposes a set of clean and simple device
abstractions

  I/O data is transferred to and from each domain via Xen,
using shared memory, asynchronous buffer descriptor
rings

  Xen supports lightweight event delivery mechanism used
for sending asynchronous notifications to domains

31

VMMs the only way to Virtualize?

  Alternative: Container-based OS (COS)
  Eg., Solaris 10, Linux-Vserver, OpenVZ

32

Features VMM COS
Multiple kernels ✔ 
Administrative power (root) ✔ ✔
Manageability ✔ ✔
Scalability ✔ ✔✔
Isolation ✔✔ ✔
Efficiency ✔ ✔✔

PlanetLab (circa 2005) Usage

  Typical Node (2.4GHz, 1GB, 100GB disk)
  ~250-300 configured VM file systems on disk
  40-90 resident VMs with ≥ 1 process
  5-20 active VMs using CPU

33

80

60

40

0

20

100
Number of Resident VMs

25
20
15
10
5
0

Number of Active VMs
30

Container vs. Hypervisor Virtualization:
What is the Trade-Off?

34

• Stephen Soltesz, Herbert Pötzl, Marc Fiuczynski, Andy Bavier, Larry Peterson.
 Container-based operating system virtualization: A scalable, high-performance
alternative to hypervisors. EuroSys 2007
• Herbert Pötzl and Marc Fiuczynski.
 Linux-VServer: Resource-Efficient OS-level Virtualization, Ottawa Linux Sym. 2007

Container Design

35

GUEST 1 GUEST 2 GUEST n

Feature Comparison

36

Hypervisor Container

Multiple Kernels X

Load Arbitrary Modules X

Local Administration (root) All

Live Migration OpenVZ

Cross Version Migration X Zap

Linux-VServer Overview

37

Security Isolation
• Access to Logical Objects

• Context ID Filter
• User IDs
• SHM & IPC address
• File system Barriers

Resource Control
• Map Container to

• HTB for Network
• CFQ for Disk

• Logical Limits
• Processes
• Open FD
• Memory Locks

Optimizations
• File-level Copy-on-write

Scheduler
• Single Level
• Token Bucket Filter
preserves O(1) scheduler

COS vs. VMM Summary
 COS=Linux-Vserver VMM=Xen
  Performance

  COS 1.25x – 2x more efficient than VMM
  Scalability

  COS scales ~10x better
  Isolation

  COS almost as good as VMM

38

Summary

  Classifying Virtual Machine Monitors
  Type I vs. type II
  Full vs. para-virtualization

  Processor virtualization
  Memory virtualization
  I/O virtualization
  Containers vs. VMM

39

40

Review Topics

  OS structure
  Process management
  CPU scheduling
  Virtual memory
  Disks and file systems
  General concepts

41

Operating System Structure

  Abstraction
  Protection and security
  Kernel structure

  Layered
  Monolithic
  Micro-kernel

  Virtualization
  Virtual machine monitor

42

Process Management

  Implementation
  State, creation, dispatching, context switch
  Threads and processes

  Synchronization
  Race conditions and inconsistencies
  Mutual exclusion and critical sections
  Semaphores: P() and V()

•  Producer & Consumer problems
•  Scheduling problems

  Semaphore implementations
•  Atomic operations: interrupt disable, test-and-set.

  Monitors and Condition Variables
  Deadlock detection and prevention

43

CPU Scheduling

  Allocation -- Non-preemptible resources
  Scheduling -- Preemptible resources

  FIFO
  Round-robin
  STCF
  Lottery

44

Virtual Memory

  Mechanisms
  Base and bounds
  Paging
  Segmentation
  Page and segmentation
  TLBs

  Page replacement
  LRU and clock
  Thrashing, working sets and WSClock

45

Disks and File Systems
  Disks

  Disk behavior
  Disk scheduling
  RAID
  Volume manager

  File access pattern and layout
  Directories and implementation
  File system performance

  Layout for performance
  Buffer cache

  File system reliability
  Crash recovery and logging

  NFS and NetApp file system
  Deduplication file system

46

Major Concepts

  Locality
  Spatial, temporal and working set

  Scheduling
  Optimal algorithms know future, but we use past instead

  Layering
  Synchronization, transactions, file systems, etc

  Caching
  Translation look aside buffer, VM, buffer cache, etc

47

Operating System as Illusionist

Physical reality
  Single CPU
  Interrupts

  Limited memory
  No protection

  Raw storage device

Abstraction
  Infinite number of CPUs
  Cooperating sequential

threads
  Unlimited virtual memory
  Each address has its own

machine
  Organized and reliable

storage system

Future courses
 Networking: COS 461
 Security: COS 429
 Advanced OS: COS 518
 Parallel Arch & Prog. COS 598A

