
COS 318: Operating Systems 

Semaphores, Monitors and 
Condition Variables 

Andy Bavier 
Computer Science Department 
Princeton University 

http://www.cs.princeton.edu/courses/archive/fall10/cos318/ 



2 

Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 



3 

Semaphores (Dijkstra, 1965) 

  Initialization 
  Initialize a value atomically 

  P (or Down or Wait) definition 
  Atomic operation 
  Wait for semaphore to become positive and then decrement 

P(s){ 
  while (s <= 0) 
    ; 
  s--; 
} 

  V (or Up or Signal) definition 
  Atomic operation 
  Increment semaphore by 1 

V(s){ 
  s++; 
} 



Bounded Buffer with Semaphores 

  Init: emptyCount = N; fullCount = 0; mutex = 1 
 Are P(mutex)and V(mutex) necessary? 

producer() { 
  while (1) { 
    produce an item 
    P(emptyCount); 

    P(mutex); 
    put the item in buffer 
    V(mutex); 

    V(fullCount); 
  } 
} 

consumer() { 
  while (1) { 
    P(fullCount); 

    P(mutex); 
    take an item from buffer 
    V(mutex); 

    V(emptyCount); 
    consume the item 
  } 
} 



5 

Example: Interrupt Handler 

  A device thread works with an interrupt handler 
  What to do with shared data? 
  What if “m” is held by another thread or by itself? 

Device thread 

... 
Acquire(m); 

... 

Release(m); 
... 

Interrupt handler 

... 
Acquire(m); 

... 

Release(m); 
... 

? 



6 

Interrupted Thread 

… 

Interrupt 
… 

Use Semaphore to Signal  

Interrupt handler 
... 

V(s); 
... 

Device thread 
while (1) { 
  P(s); 
  Acquire(m); 
  ... 
  deal with interrupt 
  ... 
  Release(m); 
} 

Init(s,0); 



Semaphores Are Not Always Convenient 

  It is a consumer and producer problem 
  Dequeue(q) should block until q is not empty 

 Semaphores are difficult to use: orders are important 

Enqueue(q, item) 
{ 
  Acquire(mutex); 
  put item into q; 
  Release(mutex); 
} 

Dequeue(q) 
{ 
  Acquire(mutex); 
  take an item from q; 
  Release(mutex); 
  return item; 
} 

 A shared queue has Enqueue and Dequeue: 



8 

Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 



Monitor: Hide Mutual Exclusion 

 Brinch-Hansen (73), Hoare (74) 
 Procedures are mutual exclusive 

Shared 
data 

... 

Queue of waiting processes 
trying to enter the monitor 

procedures 



Condition Variables in A Monitor 

 Wait( condition ) 
  Block on “condition” 

 Signal( condition ) 
  Wakeup a blocked process 

on “condition” 
Shared 

data 

... 
Entry queue 

procedures 

x 
y 

Queues 
associated 
with x, y 
conditions 



Producer-Consumer with Monitors 

monitor ProdCons 
  condition full, empty; 

  procedure Enter; 
  begin 
    if (buffer is full)  
      wait(full); 
    put item into buffer; 
    if (only one item)  
      signal(empty); 
  end; 

  procedure Remove; 
  begin 
    if (buffer is empty)  
      wait(empty); 
    remove an item; 
    if (buffer was full)  
      signal(full); 
  end; 

procedure Producer 
begin 
  while true do 
  begin 
    produce an item 
    ProdCons.Enter(); 
  end; 
end; 

procedure Consumer 
begin 
  while true do 
  begin 
    ProdCons.Remove(); 
    consume an item; 
  end; 
end; 



12 

Options of the Signaler 

  Run the signaled thread immediately and suspend the 
current one (Hoare) 
  If the signaler has other work to do, life is complex 
  It is difficult to make sure there is nothing to do, because the 

signal implementation is not aware of how it is used 
  It is easy to prove things 

  Exit the monitor (Hansen) 
  Signal must be the last statement of a monitor procedure 

  Continues its execution (Mesa) 
  Easy to implement 
  But, the condition may not be true when the awaken process 

actually gets a chance to run 



13 

Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 



Mesa Style “Monitor” (Birrell’s Paper) 

  Associate a condition variable with a mutex 
  Wait( mutex, condition ) 

  Atomically unlock the mutex and enqueued on the condition 
variable (block the thread) 

  Re-lock the lock when it is awakened 
  Signal( condition ) 

  No-op if there is no thread blocked on the condition variable 
  Wake up at least one if there are threads blocked 

  Broadcast( condition ) 
  Wake up all waiting threads 

  Original Mesa paper 
  B. Lampson and D. Redell.  Experience with processes and 

monitors in Mesa.  Comm. ACM 23, 2 (feb 1980), pp 106-117. 



15 

Consumer-Producer with Mesa-Style Monitor 

static count = 0; 
static Cond full, empty; 
static Mutex lock; 

Enter(Item item) { 
  Acquire(lock); 
  if (count==N) 
    Wait(lock, full); 
  insert item into buffer 
  count++; 
  if (count==1) 
    Signal(empty); 
  Release(lock); 
} 

Remove(Item item) { 
  Acquire(lock); 
  if (!count) 
    Wait(lock, empty); 
  remove item from buffer 
  count--; 
  if (count==N-1) 
    Signal(full); 
  Release(lock); 
} 

Any issues with this? 



16 

Consumer-Producer with Mesa-Style Monitor 

static count = 0; 
static Cond full, empty; 
static Mutex lock; 

Enter(Item item) { 
  Acquire(lock); 
  while (count==N) 
    Wait(lock, full); 
  insert item into buffer 
  count++; 
  if (count==1) 
    Signal(empty); 
  Release(lock); 
} 

Remove(Item item) { 
  Acquire(lock); 
  while (!count) 
    Wait(lock, empty); 
  remove item from buffer 
  count--; 
  if (count==N-1) 
    Signal(full); 
  Release(lock); 
} 



17 

Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 



18 

The Programming Idiom 

  Waiting for a resource 

Acquire( mutex ); 
while ( no resource ) 
 wait( mutex, cond ); 

... 

(use the resource) 
...  
Release( mutex); 

  Make a resource available 

Acquire( mutex ); 
... 

(make resource available) 
... 

Signal( cond ); 
/* or Broadcast( cond ); 
Release( mutex); 



Revisit the Motivation Example 

 Does this work? 

Enqueue(Queue q,  
        Item item) { 

  Acquire(lock); 

  insert an item to q; 

  Signal(Empty); 
  Release(lock); 
} 

Item GetItem(Queue q) { 
  Item item; 

  Acquire( lock ); 
  while ( q is empty ) 
    Wait( lock, Empty); 

    remove an item; 

  Release( lock ); 
  return item; 
} 



20 

Condition Variables Primitives 

 Wait( mutex, cond ) 
  Enter the critical section 

(min busy wait)  
  Release mutex 
  Save state to TCB, mark 

as blocked 
  Put my TCB on cond’s 

queue 
  Exit the critical section 
  Call the scheduler 

  Waking up: 
•  Acquire mutex 
•  Resume 

  Signal( cond ) 
  Enter the critical section 

(min busy wait)  
  Wake up a TCB in cond’s 

queue 
  Exit the critical section 



More on Mesa-Style Monitor 

  Signaler continues execution 
  Waiters simply put on ready queue, with no special 

priority 
  Must reevaluate the condition 

  No constraints on when the waiting thread/process must 
run after a “signal” 

  Simple to introduce a broadcast: wake up all 
  No constrains on signaler 

  Can execute after signal call (Hansen’s cannot) 
  Do not need to relinquish control to awaken thread/process 



Evolution of Monitors 
  Brinch-Hansen (73) and Hoare Monitor (74) 

  Concept, but no implementation 
  Requires Signal to be the last statement (Hansen) 
  Requires relinquishing CPU to signaler (Hoare)  

  Mesa Language (77) 
  Monitor in language, but signaler keeps mutex and CPU 
  Waiter simply put on ready queue, with no special priority 

  Modula-2+ (84) and Modula-3 (88) 
  Explicit LOCK primitive 
  Mesa-style monitor 

  Pthreads (95) 
  Started standard effort around 1989 
  Defined by ANSI/IEEE POSIX 1003.1 Runtime library 

  Java threads  
  Use ‘synchronized’ primitive for mutual exclusion 
  Wait() and notify() use implicit per-class condition variable 



23 

Today’s Topics 

  Semaphores 
  Monitors 
  Mesa-style monitors 
  Programming idiom 
  Barriers 



24 

Example: A Simple Barrier 

  Thread A and Thread B 
want to meet at a 
particular point and then 
go on 

  How would you program 
this with a monitor? 

Thread A Thread B 



25 

Using Semaphores as A Barrier 

  Use two semaphore? 
 init(s1, 0); 
init(s2, 0); 

  What about more than two threads? 

Thread A 
… 

V(s1); 
P(s2); 

… 

Thread B 
… 

V(s2); 
P(s1); 

… 



26 

Barrier Primitive 

  Functions 
  Take a barrier variable 
  Broadcast to n-1 threads 
  When barrier variable has 

reached n, go forward 
  Hardware support on 

some parallel machines 

Thread 1 
… 

Barrier(b); 
… 

Thread n 
… 

Barrier(b); 
… 

. . . 

Barrier 
variable 



27 

Equivalence 

 Semaphores 
  Good for signaling 
  Not good for mutex because it is easy to introduce a bug 

 Monitors 
  Good for scheduling and mutex 
  Maybe costly for a simple signaling 



28 

Summary 

  Semaphores 
  Monitors 
  Mesa-style monitor and its idiom 
  Barriers 


