Memory Management

5&"-’
o

Goals of this Lecture

* Help you learn about:
+ The memory hierarchy
+ Spatial and temporal locality of reference
+ Caching, at multiple levels
+ Virtual memory
* ... and thereby ...
+ How the hardware and OS give application pgms:

+ The illusion of a large contiguous address space
* Protection against each other

Virtual memory is one of the most important
concepts in systems programming

gmﬂ

Motivation for Memory Hierarchy

+ Faster storage technologies are more costly
+ Cost more money per byte
+ Have lower storage capacity
+ Require more power and generate more heat

+ The gap between processing and memory is widening
+ Processors have been getting faster and faster
+ Main memory speed is not improving as dramatically

+ Well-written programs tend to exhibit good locality
+ Across time: repeatedly referencing the same variables
+ Across space: often accessing other variables located nearby

Want the speed of fast storage at the cost and capacity of
slow storage. Key idea: memory hierarchy.

5\1#

Simple Three-Level Hierarchy

* Registers
+ Usually reside directly on the processor chip
+ Essentially no latency, referenced directly in instructions
* Low capacity (e.g., 32-512 bytes)

+ Main memory
+ About 100 times slower than a clock cycle
* Modest capacity (e.g., 512 MB-8GB)

+ Disk
* About 100,000 times slower than main memory
+ Faster when accessing many bytes in a row
+ High capacity (e.g., 128GB — 1TB)

Widening Processor/Memory Gap

+ Gap in speed increasing from 1986 to 2000
+ CPU speed improved ~55% per year
+ Main memory speed improved only ~10% per year

+ Main memory as major performance bottleneck
« Many programs stall waiting for reads and writes to finish

+ Changes in the memory hierarchy
* Increasing the number of registers
+ 8 integer registers in the x86 vs. 128 in the Itanium
+ Adding caches between registers and main memory
* On-chip (level-1) and off-chip (level-2 or 3)

-
An Example Memory Hierarchy
™)
y
Smaller, I-O:egister CPU regi hold words retrieved
registers hold words retrieve
faster, } from L1 cache.
a';f! L1-/ on-chip L1
costlier
(per byte) cache (SRAM) L1 cache holds cache lines retrieved
P y . from the L2 cache memory.
storage L2: off-chip L2
devices cache (SRAM) L2 cache holds cache lines
retrieved from main memory.
L3: main memory
(DRAM) Main memory holds disk
Larger blocks retrieved from local
’ disks.
slower,
and
cheaper L4: local secondary storage
(local disks)
(per byte) Local disks hold files
storage retrieved from disks on
devices remote network servers|

remote secondary storage
LS5: (tapes, distributed file systems, Web servers)

Locality of Reference sa

Rt

» Two kinds of locality

+ Temporal locality: recently referenced items are likely
to be referenced in near future

+ Spatial locality: Items with nearby addresses tend to be
referenced close together in time.

sum = 0;
] for (1 = 0; i < n; i++)
* Locality example sum += a[i];
- Program data return sum;

» Temporal: the variable sum
+ Spatial: variable a[i+1] accessed soon after a[i]
* Instructions
+ Temporal: cycle through the for-loop repeatedly
+ Spatial: reference instructions in sequence 7

Locality Makes Caching Effective -“

Rt

A

» Cache

« Smaller, faster storage device that acts as a staging area
- ... for a subset of the data in a larger, slower device

+ Caching and the memory hierarchy
+ Storage device at level k is a cache for level k+1
* Registers as cache of L1/L2 cache and main memory
+ Main memory as a cache for the disk
+ Disk as a cache of files from remote storage

* Locality of access is the key
* Most accesses satisfied by first few (faster) levels
+ Very few accesses go to the last few (slower) levels

Caching in a Memory Hierarchy

e

Level k:

Smaller, faster, more expensive
| 4 | | 9 | | 10 | | 3 | device at level k caches a subset
of the blocks from level k+1

Data copied between levels in
block-sized transfer units

Level k+1:
Lo J[1+]2 J[3]
a4 || 5 || 6 || 7 | Larger, slower, cheaper storage
device at level k+1 is partitioned
| 8 || 9 || 10 || 11] into blocks.
| 12 || 13 || 14 || 15]

5\1#

Cache Block Sizes

* Fixed vs. variable size
+ Fixed-sized blocks are easier to manage (common case)
+ Variable-sized blocks make more efficient use of storage

* Block size
+ Depends on access times at the level k+1 device
+ Larger block sizes further down in the hierarchy
* E.g., disk seek times are slow, so disk pages are larger

+ Examples
+ CPU reqisters: 4-byte words
+ L1/L2 cache: 32-byte blocks
+ Main memory: 4 KB pages
+ Disk: entire files 10

Cache Hit and Miss

+ Cache hit
* Program accesses a block
available in the cache | 4 | | 9 | | 10 | | 3 |
+ Satisfy directly from cache
+ E.g., request for “10”

5&"-’
o

Level k:

» Cache miss

+ Program accesses a block

not available in the cache Leve! k+1:

* Bring item into the cache
- E.g., request for “13” Lo |1 J[2 |[3]
L4 J[s |6 J[7|
« Where to place the item? L 8 [9o J[10] 11|
+ Which item to evict? [12 J[13 J[14 J| 15]

11

Three Kinds of Cache Misses

558 wurme

)
B A

+ Cold (compulsory) miss
+ Cold misses occur because the block hasn’t been accessed before
« E.g., first time a segment of code is executed
+ E.g., first time a particular array is referenced

+ Capacity miss
«+ Set of active cache blocks (the “working set”) is larger than cache
+ E.g., manipulating a 1200-byte array within a 1000-byte cache

« Conflict miss
« Some caches limit the locations where a block can be stored
+ E.g., block i must be placed in cache location (i mod 4)
+ Conflicts occur when multiple blocks map to the same location(s)
+ E.g., referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time

Cache Replacement

5&"-’
o

+ Evicting a block from the cache

* New block must be brought into the cache
+ Must choose a “victim” to evict

+ Optimal eviction policy
+ Evict a block that is never accessed again
+ Evict the block accessed the furthest in the future
+ Impossible to implement without knowledge of the future

+ Using the past to predict the future
+ Evict the “least recently used” (LRU) block
+ Assuming it is not likely to be used again soon

+ But, LRU is often expensive to implement
* Need to keep track of access times
+ So, simpler approximations of LRU are used

Who Manages the Cache?

* Registers
+ Cache of L1/L2 cache and main memory
+ Managed explicitly by the compiler
+ By determining which data are brought in and out of registers
+ Using relatively sophisticated code-analysis techniques

+ L1/L2 cache
+ Cache of main memory
+ Managed by the hardware
+ Using relatively simple mechanisms (e.g., “i mod 4”)

gmﬂ

+ Main memory
+ Cache of the disk
+ Managed (in modern times) by the operating system
+ Using relatively sophisticated mechanisms (e.g., LRU-like)
+ Since reading from disk is extremely time consuming

Manual Allocation: Segmentation

5&"-’
o

* In the olden days (aka “before the mid 1950s”)
* Programmers incorporated storage allocation in their programs
+ ... whenever the total information exceeded main memory

+ Segmentation
* Programmers would divide their programs into “segments”
+ Which would “overlay” (i.e., replace) one another in main memory

+ Advantages
« Programmers are intimately familiar with their code
+ And can optimize the layout of information in main memory

+ Disadvantages
« Immensely tedious and error-prone
« Compromises the portability of the code

LRt

Automatic Allocation: Virtual Memory sa

+ Give programmer the illusion of a very large memory
+ Large: 4 GB of memory with 32-bit addresses
+ Uniform: contiguous memory locations, from 0 to 232-1

* Independent of
« The actual size of the main memory
+ The presence of any other processes sharing the computer

+ Key idea #1: separate “address” used by the program from
“physical location” in physical memory
* Virtual addresses: generated by the program
+ Memory locations: determined by the hardware and OS

+ Key idea #2: caching
+ Swap virtual pages between main memory and the disk

One of the greatest ideas in computer systems 16

Making Good Use of Memory and Disk

+ Good use of the disk
+ Read and write data in large “pages”
+ ... to amortize the cost of “seeking” on the disk
+ E.g., page size of 4 KB

+ Good use of main memory
+ Even though the address space is large
* ... programs usually access only small portions at a time

+ Keep the “working set” in main memory
+ Demand paging: only bring in a page when needed
+ Page replacement: select good page to swap out

+ Goal: avoid thrashing
+ Continually swapping between memory and disk

gmﬂ

Virtual Address for a byte

Made up of two parts:

+ Virtual page number
* Number of the page in the virtual address space
+ Extracted from the upper bits of the (virtual) address
+ ... and then mapped to a physical page number

« Offset in a page
+ Number of the byte within the page
+ Extracted from the lower bits of the (virtual) address
+ ... and then used as offset from start of physical page

+ Example: 4 KB pages
+ 20-bit page number: 220 virtual pages
+ 12-bit offset: bytes 0 to 212-1

Virtual Memory for a Process

virtual

5&"-’
o

to physical page number

Translate virtual page number

page number

K physical
; offset in page page number
_ offset in page

32-bit address

Virtual Address Space

Physical Address Space

19

Page Table to Manage the Cache

« Current location of each virtual page
+ Physical page number in memory, or
+ Disk address (or null if unallocated)

« Example
+ Virt. Page 0: at location xx on disk
+ Virt. Page 1: at physical page 2 in memory
* Virt. Page 3: not yet allocated

- Page “hit” handled by hardware
« Compute the physical address
» Map virtual page # to physical page #
+ Concatenate with offset in page
+ Read or write from main memory
+ Using the physical address

+ Page “miss” triggers an exception...

(i~)

2
0
1
27
2
4
3
1
4
10
o physical
virtual pages
pages

20

10

“Miss” Triggers Page Fault

+ Accessing page not in main memory

V| Physical or
disk address
0|0 XX
111 2
2|0 yy
310 null
4 |1 1

movl 0002104,

Virtual page #2 at

%$eax

location yy on disk!

virtual
pages

27

10

physical
pages
21

OS Handles the Page Fault

+ Bringing page in from disk

+ If needed, swap out old page (e.g., #4)
+ Bring in the new page (page #2)

+ Update the page table entries

A~ W DD~ O

V| Physical or
disk address

0 XX

1 2

0, ¥ 1

0 null

A A n

5\1#

27

0

1

2
—3—]
L—

4

virtual
pages

10

physical
pages
2

11

VM as a Tool for Memory Protection

B

* Memory protection
+ Prevent process from unauthorized reading or writing of memory

+ User process should not be able to
+ Modify the read-only text section in its own address space
+ Read or write operating-system code and data structures
+ Read or write the private memory of other processes

+ Hardware support
+ Permission bits in page-table entries (e.g., read-only)
+ Separate identifier for each process (i.e., process-id)
+ Switching between unprivileged mode (for user processes) and
privileged mode (for the operating system)

23

Sharing Physical Memory ; ©
....... 12
0 o e
................................. 1
T
P T 0
Process 2 Virtual 0
Address Space S 0
1 [0
Process 1Virtual T 1
Address Space Physical
OS Address Space
V.A.S. 24

12

Process-ID and Page Table Entries

9

4

0
/ 0 0
0| — 6
1 2
Al 1
2
1
34— | 2
4+ Physical
Page tables | 1 '%N 0 Meymory
1
Process ID 4
0
address _ 5
Virtua.i offset in page 1
page number 6 25
Page Tables in OS Memory... 1
6
0
0 5
0
1 4
2
3
2
: 0 1
Process 2 Virtual 2
Address Space : 0 1
Process 1 Virtual 1 f’%
Address Space cal

OS
VAS

26

Address Space

Measuring the Memory Usage

Virtual memory usage
Physical memory usage (“resident set size”)
CPU time used by this process so far

$ps 1
F UID PID PPID PRI VsSz RSS STAT TIME COMMAND U n |X
0 115 7264 7262 17 4716 1400 SN 0:00 -csh
0 115 7290 7264 17 15380 10940 SN 5:52 emacs
0 115 3283 7264 23 2864 812 RN 0:00 ps 1
5 windows Task Manager “ 1 =10 LI
File Options View Help Wi n d O S
spplications [Procssses || performance |
Image Name | PID | CPU [cPU Time [em Us... [Page Fa... [wMsize |
inetdd32.exe S80 00 0:00:04 2,084K 557 552K
ps_agent.exe S96 00 0:00:00 3436K 931 1,224K
Iap.exe 612 00 0:00:02 120K 41,224 S84 K
qttask.exe 1180 00 00000 1,348K 345 36K J
POWERPNT.EXE 1188 00 86:32:55 7,444K 753920 67,624K
acrotray.exe 1208 00 00000 5848K 1970 2,388K
INTERNATEXE 1216 00 0:00:00 1,656K 463 360K
mozilla.exe 1228 00 0:4:18 62664K 159,207 S9,600K
Acrobat.exe 2% 00 0004 450%K 121057 47220k)
End Process
Processes: 38 |CPU Usage: 0% [Mem Usage: 329780K / 1277168K 4

27

A

VM as a Tool for Memory Management

558 wurme

£

+ Simplifying linking
« Same memory layout for each process
+ E.g., text section always starts at 0x08048000
+ E.g., stack always grows down from OxObf££££fff
+ Linker can be independent of physical location of code

+ Simplifying sharing
» User processes can share some code and data
+ E.g., single physical copy of stdio library code (like printf)
+ Mapped in to the virtual address space of each process

« Simplifying memory allocation
+ User processes can request additional memory from the heap
+ E.g., usingmalloc () to allocate, and free () to deallocate
+ OS allocates contiguous virtual pages...

+ ... and scatters them anywhere in physical memory
28

14

5&"-’
ok

Summary

* Memory hierarchy
+ Memory devices of different speed, size, and cost
+ Registers, on-chip cache, off-chip cache, main memory, disk, tape
+ Locality of memory accesses making caching effective

+ Virtual memory
+ Separate virtual address space for each process
+ Provides caching, memory protection, and memory management

+ Implemented via cooperation of the address-translation hardware
and the OS (when page faults occur)

* In Dynamic Memory Management lectures:
+ Dynamic memory allocation on the heap
+ Management by user-space software (e.g., malloc () and free())
29

15

