Assembly Language:
Function Calls

5&"-’
ok

Goals of this Lecture

* Help you learn:
+ The challenges of supporting functions
+ Providing information for the called function
+ Function arguments and local variables
+ Allowing the calling function to continue where it left off
+ Return address and contents of registers
+ How to use the runtime stack
+ Stack frame: args, local vars, return address, registers
+ Stack pointer: pointing to the current top of the stack
* How to call functions
+ Call and ret instructions, to call and return from functions
+ Pushing and popping the stack frame
+ Using the base pointer EBP as a reference point

g&‘#

|

Challenges of Supporting Functions sa

E 3

+ Code with a well-defined entry and exit points
+ Call: How does the CPU go to that entry point?

* Return: How does the CPU go back to the right place,
when “right place” depends on who called the function?

+ With arguments and local variables
+ How are the arguments passed from the caller?
* Where should the local variables be stored?

* Providing a return value
* How is the return value returned to the calling function?

+ Without changing variables in other functions
* How are the values stored in registers protected?

3]

Call and Return Abstractions 5!

+ Call a function
+ Jump to the beginning of an arbitrary procedure
* l.e., jump to the address of the function’s first instruction

* Return from a function

+ Jump to the instruction immediately following the “most-
recently-executed” Call instruction

P: # Function P R: # Function R

jmp R # Call R jmp Rtn_pointl # Return
Rtn_pointl:

Challenge: Where to Return?

2
Rt

P: # Function P R: # Function R
jmp R # Call R jmp ?°?°? # Return
Rtn_pointl:
Q: # Function Q
_ The same function may be
T # Call R called from many places.
R int2:
tn_point What addr should return
instruction in R jump to?
5

Store Return Address in Register?

558 wurme

P: # Proc P
movl $Rtn pointl, %$eax
jmp R # call R

Rtn_pointl:

R: # Proc R

jmp %eax # Return

Q: # Proc Q
movl $Rtn point2, %eax
jmp R # Call R

Rtn_point2:

Convention: At Call time,
store return address in EAX

Problem: Nested Function Calls

P: # Function P R: # Function R
movl $Rtn pointl, %eax
jmp Q # Ccall Q jmp %eax # Return
Rtn_pointl:
Q: # Function Q
movl $Rtn point2, teax | * ProblemifP calls Q, and
. QcallsR
jmp R # Call R
Rtn_point2: * Return address for P to Q
call is lost
jmp %eax # Return ;

Solution: Put Return Address on a Stack sa

e

B

* May need to store many return addresses
* The number of nested functions is not known in advance

+ A return address must be saved for as long as the
function invocation continues

» Addresses used in reverse order ‘l’
- E.g., function P calls Q, which then calls R EIP for Q
* Then R returns to Q which then returns to P

EIP for P

*+ So, need last-in-first-out data structure: A Stack
+ Calling function pushes return address on the stack

+ ... and called function pops return address off the stack
8

Arguments to the Function

+ Calling function needs to
pass arguments
+ Cannot simply put arguments
in a specific register
+ Because function calls may
be nested

+ So, put the arguments on
the stack, too!
+ Calling function pushes
arguments on the stack

« Called function loads/stores-
them on the stack

9

4

]

int add3(int a, int b, int c)
{
int d;

d=a+b+c;

return d;

}

int foo(void)
{

return add3 (3, 4,
}

5);

Local Variables

* Local variables: called
function has local variables
+ Short-lived, so don’t need a
permanent location in memory
« Size known in advance, so
don’t need to allocate on the
heap

+ So, the function just uses
the top of the stack
+ Store local variables on the
top of the stack

« The local variables disappear
after the function returns

5“9

|

int add3(int a, int b, int c)
{

int d;
d=a+Db+ c;
return d;

}

int foo(void)
{

return add3 (3, 4, 5);
}

B

s

Registers

]

* Registers
+ Small, fast memory (e.g., directly on the CPU chip)
+ Used as temporary storage for computations

« Cannot have separate registers per function
+ Could have arbitrary number of nested functions
+ Want to allow each function to use all the registers

+ Could write all registers out to memory
+ E.g., save values corresponding to program variables
+ Possible, but a bit of a pain...
+ E.g., find someplace to stash intermediate results
+ Where would we put them?

* Instead, save the registers on the stack, too I

gmﬂ

Stack Frames

+ Use stack for all temporary data related to each active
function invocation

* Return address

* Input parameters

+ Local variables of function

+ Saving registers across invocations

Stack Frame

+ Stack has one Stack Frame per active function invocation

High-Level Picture

B

of

R

s

main begins executing 0
%ESP — _
main’s
Bottom Stack Frame 13
High-Level Picture
main begins executing 0
main calls P
%ESP —

Bottom

P’'s

Stack Frame

main’s

Stack Frame

High-Level Picture

B

s
.;2 %

(eerp

lmmmi

main begins executing 0
main calls P
P calls Q
%ESP —
Q's
Stack Frame
P’'s
Stack Frame
main’s
Bottom Stack Frame 15
High-Level Picture
main begins executing 0
main calls P
P calls Q
Q calls P
%ESP

Bottom

P’'s

Stack Frame

Q's

Stack Frame

P’'s

Stack Frame

main’s

Stack Frame

High-Level Picture

B

s
.;2 %

(eerp

lmmmi

main begins executing 0
main calls P
P calls Q
Q calls P
P returns
%ESP —
Q's
Stack Frame
P’'s
Stack Frame
main’s
Bottom Stack Frame 17
High-Level Picture
main begins executing 0
main calls P
P calls Q
calls P
%ESP

Q
P returns
Q calls R

Bottom

R’s

Stack Frame

Q's

Stack Frame

P’'s

Stack Frame

main’s

Stack Frame

High-Level Picture

B

s
.;2 %

(eerp

lmmmi

main begins executing 0
main calls P
P calls Q
Q calls P
P returns
Q calls R
R returns HESP . Q's
Stack Frame
P’'s
Stack Frame
main’s
Bottom Stack Frame 19
High-Level Picture
main begins executing 0
main calls P
P calls Q
Q calls P
P returns
Q calls R
R returns
Q returns %ESP R
P’'s
Stack Frame
main’s
Bottom Stack Frame 20

10

High-Level Picture

main begins executing
main calls P

calls Q

calls P

returns

calls R

returns

returns

" O ® O "W o o

returns

::ﬁ
(G e

(I)

%ESP —

Bottom

main’s

Stack Frame 21

High-Level Picture

main begins executing
main calls P

calls Q

calls P

returns

calls R

returns

returns

"m0 ® O "W o0 W

returns

main returns

Bottom

5“9

|

22

11

5&"-’
o

Function Call Details

+ Call and Return instructions
+ Call: push EIP on the stack, and jump to function
* Return: pop from stack into the EIP to go back

+ Argument passing between procedures
+ Calling function pushes arguments on to the stack
+ Called function reads/writes on the stack

* Local variables
+ Called function creates and manipulates on the stack

* Register saving conventions
+ Either calling or called function saves all of the registers

23

gmﬂ

Call and Return Instructions

0
Instruction | Effective Operations
pushl src |subl $4, %esp
movl src, (%esp)
popl dest |movl (%esp), dest
addl $4, %esp
call addr |pushl %eip
jmp addr
i %ESP >
ret op %ei °
PP Py | before Call
Note: can’t really access EIP
directly, but this is implicitly
what call and ret are doing. 24

12

Call and Return Instructions

5&"-’
ok

0

Instruction Operation
pushl src |subl $4, %esp

movl src, (%esp)
popl dest [movl (%esp), dest

addl $4, %esp
call addr |pushl %eip

jmp addr %ESP >

. after Call ChE) 1pd

ret pop %eip

25

Call and Return Instructions

Instruction

Operation

pushl src

subl $4, %esp

movl src, (%esp)

g&ﬂ

|

popl dest |movl (%esp), dest

addl $4, %esp
call addr |pushl %eip

; %ESP >

Jmp_addr ° old EIP
ret op %ei before

PopP P Return

Return instruction assumes that
the return address is at the top of
the stack

Call and Return Instructions

Instruction Operation

pushl src |subl $4, %esp

movl src, (%esp)

popl dest [movl (%esp), dest

addl $4, %esp

call addr |pushl %eip
jmp addr

5&"-’
o

Y

ret pop %$eip %ESP
after

Return instruction assumes that Return
the return address is at the top of
the stack

27

Input Parameters

+ Caller pushes input parameters 0
before executing the Call instruction

+ Parameters are pushed in the
reverse order
+ Push Nt argument first
+ Push 1st argument last
+ So that first argument is at the top of
the stack at the time of the Call

gmﬂ

%ESP >
before
pushing
arguments

28

14

Input Parameters

+ Caller pushes input parameters

before executing the Call instruction

« Parameters are pushed in the reverse

order
+ Push N argument first
+ Push 1st argument last

5&"-’
o

0,
+ So that first argument is at top of tf)eEc?rz Arg 1
the stack at the time of the Call Call Arg ..
Arg N
29
Input Parameters
+ Caller pushes input parameters 0

before executing the Call instruction

+ Parameters are pushed in the
reverse order
+ Push Nt argument first
+ Push 1st argument last
+ So that first argument is at top of
the stack at the time of the Call

%ESP

after Call

Called function can address arguments
relative to ESP: Arg 1 as 4(%esp)

Why is the EIP put on after the arguments?

Old EIP

Arg 1

Arg ..

Arg N

30

15

Input Parameters

+ Caller pushes input parameters

before executing the Call instruction

+ Parameters are pushed in the
reverse order
+ Push N argument first
+ Push 1st argument last
+ So that first argument is at top of
the stack at the time of the Call

%ESP
before
Return

5&"-’
o

0ld EIP

Arg 1

Arg ..

Arg N

31

Input Parameters

+ Caller pushes input parameters

before executing the Call instruction

+ Parameters are pushed in the
reverse order
+ Push Nt argument first
+ Push 1st argument last
+ So that first argument is at top of
the stack at the time of the Call

After the function call is finished,
the caller pops the pushed
arguments from the stack

%ESP

5\1#
ok

LS

after
Return

Y

Arg 1

Arg ..

Arg N

32

16

Input Parameters

+ Caller pushes input parameters 0
before executing the Call instruction

+ Parameters are pushed in the
reverse order
+ Push N argument first
+ Push 1st argument last
+ So that first argument is at top of
the stack at the time of the Call

5&"-’
o

%ESP >
after
After the function call is finished, popping

the caller pops the pushed arguments
arguments from the stack

33

Base Pointer: EBP

+ As Callee executes, ESP may change
+ E.g., preparing to call another function

+ Use EBP as fixed reference point

+ E.g., to access arguments and
other local variables

5\1#

 Need to save old value of EBP ~ %ESP—>
- Before overwriting EBP register after Call

+ Callee begins by executing “prolog”
pushl %ebp

movl %esp, %ebp

%EBP —>

Old EIP

Arg 1

Arg ..

Arg N

34

17

Base Pointer: EBP

+ As Callee executes, ESP may change
+ E.g., preparing to call another function

+ Use EBP as fixed reference point

+ E.g., to access arguments and
other local variables %ESP,

- Need to save old value of EBP 7EBP

+ Before overwriting EBP register
+ Callee begins by executing “epilog”
pushl %ebp

movl %esp, %ebp

+ Regardless of ESP, Callee can address
Arg 1 as 8(%ebp)

5\"-’
A ':2 %

W

0ld EBP

0ld EIP

Arg 1

Arg ..

Arg N

35

Base Pointer: EBP

+ Before returning, Callee must

5\1#
ok

LS

0
restore EBP to its old value
%ESP —
+ Executes
—_—
movl %ebp, %esp %EBP .
° O0ld EBP
popl %ebp
O0ld EIP
ret
Arg 1
Arg ..
Arg N

36

18

Base Pointer: EBP

+ Before returning, Callee must
restore EBP to its old value

+ Executes
movl %ebp, %esp %ESP,
popl %ebp %EBP
ret

5\"-’
A ':2 %

&

0ld EBP

0ld EIP

Arg 1

Arg ..

Arg N

37

Base Pointer: EBP

+ Before returning, Callee must
restore EBP to its old value

+ Executes
movl %ebp, %esp

popl %ebp %ESP

ret

%EBP —>

5\1#
ok

ire

Old EIP

Arg 1

Arg ..

Arg N

£

38

19

Base Pointer: EBP

5\"-’
A ':2 %

W

Before returning, Callee must 0
restore EBP to its old value

Executes
movl %ebp, %esp

popl %ebp

ret %ESP >
—_—

%EBP —>

Arg 1

Arg ..

Arg N

39

Allocation for Local Variables

Local variables of the Callee
are also allocated on the stack

gmﬂ
ok

LS

Allocation done by moving the =~ %ESP
stack pointer

Var 2

Var 1

. %EBP —>
Example: allocate two integers

O0ld EBP

+ subl $4, %esp
+ subl $4, %esp
+ (or equivalently, subl $8, %esp)

Reference local variables using
the base pointer

+ -4(%ebp)

+ -8(%ebp)

Old EIP

Arg 1

Arg ..

Arg N

40

20

Use of Registers

* Problem: Called function may use a register that
the calling function is also using
* When called function returns control to calling function,
old register contents may be lost
+ Calling function cannot continue where it left off

+ Solution: save the registers on the stack
« Someone must save old register contents
+ Someone must later restore the register contents

* Need a convention for who saves and restores
which registers

41

gmﬂ

GCC/Linux Convention

0
+ Caller-save registers
* $eax, %edx, %ecx %ESP —>
- Save on stack (if necessary) Saved
prior to calling Registers
- Callee-save registers :z i
* %ebx, %esi, %edi %EBP—
+ Old values saved on stack prior old EBP
to using, and restored later 0ld EIP
Arg 1
* %esp, %ebp handled as Arg ..
described earlier Arg N
- Return value is passed from Saved
Callee to Caller in %eax megfsied)l

21

A Simple Example ;a

int add3(int a, int b, int c)
{
int d;

d=a+b + c;

return d;

}

int foo(void)
{

return add3(3, 4, 5);
}

43

A Simple Example

ok

et

In general, one may need to push

int add3(int a, int b, int c){ 4 cq/ee-save registers onto the stack

int d;
d=a+b+ c; # Add the three arguments
return d; movl 8(%ebp) ’ %eax
%ESP —> addl 12 (%ebp), %eax
var d addl 16 (%ebp), %eax
%EBP =—>
old KBP # Put the sum into d
old ETP movl %eax, -4 (%ebp)
Arg a))
Arg b # Return value is already in eax
Arg c # In general, one may need to pop
- # callee-save registers
add3: .
Save old ebp and set up new ebp # Restore old ebp, discard stack frame
pushl %ebp movl %ebp, %esp
movl %esp, %ebp popl %ebp
Allocate space for d # Return
subl $4, Sesp ret

44

22

A Simple Example

int foo(void) {
return add3(3, 4, 5);

' old EIP

Arg a

Arg b

Arg c

%ESP
%EBP —>

. —

foo:
Save old ebp, and set-up
new ebp
pushl %ebp
movl %esp, %ebp

No local variables
No need to save callee-save

registers as we
don'’t use any registers

(Ceerp

2

B

s

No need to save caller-
save registers either

Push arguments in reverse order
pushl $5
pushl $4
pushl $3

call add3

Pop arguments from the stack
addl $12, %esp

Return value is already in eax

Restore old ebp and

discard stack frame
movl %ebp, %esp
popl %ebp

Return
ret 45

Conclusion

* Invoking a function
+ Call: call the function

* Ret: return from the instruction

« Stack Frame for a function invocation includes

* Return address,

* Procedure arguments,
* Local variables, and

+ Saved registers

* Base pointer EBP

+ Fixed reference point in the Stack Frame
+ Useful for referencing arguments and local variables

46

23

