Midterm Review
(overview of fall 2005 midterm)

COS 217

1. Modulo Arithmetic and Character /O

void f (unsigned int n) {
do {

putchar('0’ + (n $ 10));
} while (n /= 10);
putchar(‘\n’) ;

» What does f(837) produce?
* What does this function do?

1. Modulo Arithmetic and Character I/0

void f (unsigned int n) {
for (; n; n /= 10)
putchar ('0’ + (n % 10));

putchar(‘\n’) ;

*When i1s the answer different?

gmﬂ

2. Pointers and Strings

void f (char *s) {
char *p = s; l l

while (*s)
s++;
for (s--; s>p; s—--,p++) {
char c = *s;
*S = *p;
*p = ¢;

} *What does this function do?

5&"-’
o

3. Short Answer

* In the memory layout for a UNIX process:

o Why does the heap grow from the top down and the stack from the
bottom up, instead of both growing from the top down or both

growing from the bottom up?

Text

BSS
Heap

}

Stack

4. Deterministic Finite Automata

558 wurme

3]
B A

Identify whether or not a string is a floating-point number

* Valid numbers * [nvalid numbers
0 “-34” o “abc”
o “78.1” o “-g9”
o “+298.3” o “1e”
0 “-34.7e-1” o “p”
o “34.7E-1” o “17.9A”
0 7. o “0.38+”
o “7” o«

0 “999.99e99” o “38.38f9”

4. Deterministic Finite Automata

* Optional “+” or “-”

« Zero or more digits

5&"-’
o

4. Deterministic Finite Automata

+ Optional “+” or

+ Zero or more digits

* Optional decimal point
o Followed by zero or more digits

gmﬂ

4. Deterministic Finite Automata
+ Optional “+” or “-” Optional exponent “E” or “e”
o Followed by optional “+” or “-”

* Zero or more digits o Followed by one or more digits

+ Optional decimal point
o Followed by zero or more digits

5: Abstract Data Types

* Interface for a Queue (a first-in-first-out data structure)

#ifndef QUEUE_INCLUDED
#define QUEUE INCLUDED

typedef struct Queue_t *Queue T;

Queue T Queue new(void) ;
int Queue_ empty (Queue T queue) ;
void Queue_ add(Queue T queue, void* item);

void* Queue_ remove (Queue T queue) ;

#endif 10

5: Abstract Data Types

 Data structures for a Queue

struct list {
void* item;
struct list *next;

struct Queue_t*T”—————

struct list *head;
struct list *tail;

Ie

b G __—

5] %
)

mlmmmi

Why void*?

11

5: Abstract Data Types

+ An implementation for a Queue_new

gmﬂ

Queue T Queue new(void) {

assert (queue != NULL) ;
queue->head = NULL;
queue->tail = NULL;

return queue;

Queue T queue = malloc(sizeof *queue);

Implement a check for whether the queue is empty.

5: Abstract Data Types

* An implementation for a Queue _empty

assert (queue != NULL) ;

int Queue_ empty (Queue T queue) {

return queue->head == NULL;

5&"-’
o

5: Abstract Data Types

* An implementation for a Queue add

tail

g

1

head
y
3
—

head

—

tail

W

newnode

¢

0

gmﬂ

5: Abstract Data Types

* An implementation for a Queue add

tail newnode
head l

' 0

NULL

tail
head

{

0

5&"-’
o

Queue_add() Implementation

gmﬂ

void Queue_add(Queue_T queue, void *item) {
struct list *newnode;

assert(queue != NULL);
newnode = (struct list*)malloc(sizeof(*newnode));
assert(newnode != NULL);
newnode->item = item;
newnode->next = NULL;
if (queue->tail == NULL)
queue->head = newnode;
else
queue->tail->next = newnode;
queue->tail = newnode;

5. ADT Common Mistakes

+ Adding to the queue
o Implementing a stack rather than a queue
— Adding element to the head, rather than the tail
o Not handling the case where the queue is empty
o Missing assert() after call to malloc() for new entry

5&"-’
o

+ Removing from the queue
o Missing assert() when removing an element from an empty queue
o Not handling removing the last item from the queue
o Not doing a free() to return space used by the head element

gmﬂ

Midterm Review
(overview of spring 2008 midterm)

18

5&"-’
o

Bit-Wise Manipulations

+ Consider the following code, where k is an
unsigned int:

printf(“%u\n”, k — ((k >> 2) << 2));

* What does the code do? Rewrite the line of code in
a more efficient way.

i
o

What Does This Function Do? g

char* f(unsigned int n) {
int i, numbits = sizeof(unsigned int) * 8;
char* ret = (char *) malloc(numbits + 1);
for (i=numbits-1; i>=0; i--, n>>=1)
ret[i] = ‘0’ + (n & 1);
ret[numbits] = \0’;

return ret;

20

10

Good Bug Hunting

+ Consider this function that converts an integer to a string

char *itoa(int n) {

char retbuf[5]; —

sprintf(retbuf, “%d”, n);
/’ Temporary memory
return retbuf;

| Not enough space

* Where the sprintf() function “prints” to a formatted string,
e.g., sprintf(retbuf, “%d”, 72) places the string “72”
starting at the location in memory indicated by the address
retbuf: 21

gmﬂ

Fixing the Bug: Rewrite

char *itoa(int n) {
int size = 0;
int temp = n;

/* Count number of decimal digits in n */
while (temp /= 10)
size++;

size++;

/* If n is negative, add room for the "-" sign */
if(n<0)
size++;

11

B
A ':2 %

Fixing the Bug: Rewrite 5

:mmmi

/* Allocate space for the string */
char* retbuf = (char *) malloc(size + 1);
assert(retbuf != NULL);

/* Convert the number to a string of digits */
sprintf(retbuf, "%d", n);

return retbuf;

)

Common Errors for this Problem

558 wurme

<819

* Mishandle case where n is 0, which requires 1 character

» Assume n is unsigned, and not allocate space for the minus sign
» Omit the “assert(retbuf)” after the call to malloc

* Use “sizeof(n)” to compute the length: gives bytes in int type

» Extract each of the digits of n, using code similar to question 1b
(but base 10). Perfectly valid, though using “sprintf” is simpler.

* An interesting, and clever, answer was to create a large array of
characters as a local variable, use sprintfto place the string
representation of n in the array, use strlen() to compute the
length of the string, use malloc() to allocate the appropriate
amount of space to retbuff, and then copy the string from the
local variable to retbuf. 24

12

5&"-’
o

Preparing for the Exam

+ Studying for the exam
o Read through lecture and precept nodes
o Study past midterm exams
o Read through the relevant sections and the exercises in the book

+ Taking the exam
o Read briefly through all questions
o Strategize regarding where you spend your time, and what you
answer first (hint: the easy stuff)

+ Exam logistics
o Thursday 10-10:50am in *WATCH LISTSERV FOR UPDATES*
o Closed book and notes. No computers or PDAs/phones allowed.
o No questions on UNIX tools (e.g., emacs, gcc, gdb, ...)

25

13

