
1

1

Performance Improvement

The material for this lecture is drawn, in part, from

The Practice of Programming (Kernighan & Pike) Chapter 7

2

Goals of this Lecture

• Help you learn about:

•  Techniques for improving program performance

•  How to make your programs run faster and/or use less

memory

•  The GPROF execution profiler

• Why?

•  In a large program, typically a small fragment of the code

consumes most of the CPU time and/or memory

•  A power programmer knows how to identify such code

fragments

•  A power programmer knows techniques for improving

the performance of such code fragments

2

3

Performance Improvement Pros

• Techniques described in this lecture can yield
answers to questions such as:

•  How slow is my program?

•  Where is my program slow?

•  Why is my program slow?

•  How can I make my program run faster?

•  How can I make my program use less memory?

4

Performance Improvement Cons

• Techniques described in this lecture can yield code
that:

•  Is less clear/maintainable

•  Might confuse debuggers

•  Might contain bugs

•  Requires regression testing

• So…

3

5

When to Improve Performance

“The first principle of optimization is

donʼt.

Is the program good enough already? Knowing how a

program will be used and the environment it runs in, is there
any benefit to making it faster?”

-- Kernighan & Pike

6

Execution Efficiency

• We propose 5 steps to improve execution (time)
efficiency

• Letʼs consider one at a time…

4

7

Timing Studies

(1) Do timing studies

•  To time a program… Run a tool to time program execution

•  E.g., Unix time command

•  Output:

•  Real: Wall-clock time between program invocation and termination

•  User: CPU time spent executing the program

•  System: CPU time spent within the OS on the programʼs behalf

•  But, which parts of the code are the most time consuming?

$ time sort < bigfile.txt > output.txt
real 0m12.977s
user 0m12.860s
sys 0m0.010s

8

Timing Studies (cont.)

•  To time parts of a program... Call a function to compute

wall-clock time consumed

•  E.g., Unix gettimeofday() function (time since Jan 1, 1970)

•  Not defined by C90 standard

#include <sys/time.h>

struct timeval startTime;
struct timeval endTime;
double wallClockSecondsConsumed;

gettimeofday(&startTime, NULL);
<execute some code here>
gettimeofday(&endTime, NULL);
wallClockSecondsConsumed =
 endTime.tv_sec - startTime.tv_sec +
 1.0E-6 * (endTime.tv_usec - startTime.tv_usec);

5

9

Timing Studies (cont.)

•  To time parts of a program... Call a function to compute

CPU time consumed

•  E.g. clock() function

•  Defined by C90 standard

#include <time.h>

clock_t startClock;
clock_t endClock;
double cpuSecondsConsumed;

startClock = clock();
<execute some code here>
endClock = clock();
cpuSecondsConsumed =
 ((double)(endClock - startClock)) / CLOCKS_PER_SEC;

10

Identify Hot Spots

(2) Identify hot spots

•  Gather statistics about your programʼs execution

•  How much time did execution of a function take?

•  How many times was a particular function called?

•  How many times was a particular line of code executed?

•  Which lines of code used the most time?

•  Etc.

•  How? Use an execution profiler

•  Example: gprof (GNU Performance Profiler)

6

11

GPROF Example Program

• Example program for GPROF analysis

•  Sort an array of 10 million random integers

•  Artificial: consumes much CPU time, generates no output

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

enum {MAX_SIZE = 10000000};
int a[MAX_SIZE]; /* Too big to fit in stack! */

void fillArray(int a[], int size) {
 int i;
 for (i = 0; i < size; i++)
 a[i] = rand();
}

void swap(int a[], int i, int j) {
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
}
…

12

GPROF Example Program (cont.)

• Example program for GPROF analysis (cont.)

…
int partition(int a[], int left, int right) {
 int first = left-1;
 int last = right;
 for (;;) {
 while (a[++first] < a[right])
 ;
 while (a[right] < a[--last])
 if (last == left)
 break;
 if (first >= last)
 break;
 swap(a, first, last);
 }
 swap(a, first, right);
 return first;
}
…

7

13

GPROF Example Program (cont.)

• Example program for GPROF analysis (cont.)

…
void quicksort(int a[], int left, int right) {
 if (right > left)
 {
 int mid = partition(a, left, right);
 quicksort(a, left, mid - 1);
 quicksort(a, mid + 1, right);
 }
}

int main(void) {
 fillArray(a, MAX_SIZE);
 quicksort(a, 0, MAX_SIZE - 1);
 return 0;
}

14

Using GPROF

•  Step 1: Instrument the program

 gcc217 –pg mysort.c –o mysort

•  Adds profiling code to mysort, that is…

•  “Instruments” mysort

•  Step 2: Run the program

 mysort

•  Creates file gmon.out containing statistics

•  Step 3: Create a report

 gprof mysort > myreport
•  Uses mysort and gmon.out to create textual report

•  Step 4: Examine the report

 cat myreport

8

15

The GPROF Report

•  Flat profile

•  Each line describes one function

•  name: name of the function

•  %time: percentage of time spent executing this function

•  cumulative seconds: [skipping, as this isnʼt all that useful]

•  self seconds: time spent executing this function

•  calls: number of times function was called (excluding recursive)

•  self s/call: average time per execution (excluding descendents)

•  total s/call: average time per execution (including descendents)

 % cumulative self self total
 time seconds seconds calls s/call s/call name
 84.54 2.27 2.27 6665307 0.00 0.00 partition
 9.33 2.53 0.25 54328749 0.00 0.00 swap
 2.99 2.61 0.08 1 0.08 2.61 quicksort
 2.61 2.68 0.07 1 0.07 0.07 fillArray

16

The GPROF Report (cont.)

•  Call graph profile

index % time self children called name
 <spontaneous>
[1] 100.0 0.00 2.68 main [1]
 0.08 2.53 1/1 quicksort [2]
 0.07 0.00 1/1 fillArray [5]

 13330614 quicksort [2]
 0.08 2.53 1/1 main [1]
[2] 97.4 0.08 2.53 1+13330614 quicksort [2]
 2.27 0.25 6665307/6665307 partition [3]
 13330614 quicksort [2]

 2.27 0.25 6665307/6665307 quicksort [2]
[3] 94.4 2.27 0.25 6665307 partition [3]
 0.25 0.00 54328749/54328749 swap [4]

 0.25 0.00 54328749/54328749 partition [3]
[4] 9.4 0.25 0.00 54328749 swap [4]

 0.07 0.00 1/1 main [1]
[5] 2.6 0.07 0.00 1 fillArray [5]

9

17

The GPROF Report (cont.)

•  Call graph profile (cont.)

•  Each section describes one function

•  Which functions called it, and how much time was consumed?

•  Which functions it calls, how many times, and for how long?

•  Usually overkill; we wonʼt look at this output in any detail

18

GPROF Report Analysis

•  Observations

• swap() is called very many times; each call consumes little time;
swap() consumes only 9% of the time overall

• partition() is called many times; each call consumes little time;
but partition() consumes 85% of the time overall

•  Conclusions

•  To improve performance, try to make partition() faster

•  Donʼt even think about trying to make fillArray() or
quicksort() faster

10

19

GPROF Design

•  Incidentally…

• How does GPROF work?

•  Good question!

•  Essentially, by randomly sampling the code as it runs

•  … and seeing what line is running, & what function itʼs in

20

Algorithms and Data Structures

(3) Use a better algorithm or data structure

•  Example:

•  For mysort, would mergesort work better than quicksort?

•  Depends upon:

•  Data

•  Hardware

•  Operating system

•  …

11

21

Compiler Speed Optimization

(4) Enable compiler speed optimization
 gcc217 –Ox mysort.c –o mysort

•  Compiler spends more time compiling your code so…

•  Your code spends less time executing

• x can be:

•  1: optimize

•  2: optimize more

•  3: optimize yet more

•  See “man gcc” for details

•  Beware: Speed optimization can affect debugging

•  E.g. Optimization eliminates variable => GDB cannot print value of

variable

22

Tune the Code

(5) Tune the code

•  Some common techniques

•  Factor computation out of loops

•  Example:

•  Faster:

for (i = 0; i < strlen(s); i++) {
 /* Do something with s[i] */
}

length = strlen(s);
for (i = 0; i < length; i++) {
 /* Do something with s[i] */
}

12

23

Tune the Code (cont.)

•  Some common techniques (cont.)

•  Inline function calls

•  Example:

•  Maybe faster:

•  Beware: Can introduce redundant/cloned code

•  Some compilers support inline keyword

void g(void) {
 /* Some code */
}
void f(void) {
 …
 g();
 …
}

void f(void) {
 …
 /* Some code */
 …
}

24

Tune the Code (cont.)

•  Some common techniques (cont.)

•  Unroll loops

•  Example:

•  Maybe faster:

•  Maybe even 
 faster:

•  Some compilers provide option, e.g. –funroll-loops

for (i = 0; i < 6; i++)
 a[i] = b[i] + c[i];

for (i = 0; i < 6; i += 2) {
 a[i+0] = b[i+0] + c[i+0];
 a[i+1] = b[i+1] + c[i+1];
}

a[i+0] = b[i+0] + c[i+0];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];
a[i+4] = b[i+4] + c[i+4];
a[i+5] = b[i+5] + c[i+5];

13

25

Tune the Code (cont.)

•  Some common techniques (cont.):

•  Rewrite in a lower-level language

•  Write key functions in assembly language instead of C

•  Use registers instead of memory

•  Use instructions (e.g. adc) that compiler doesnʼt know

•  Beware: Modern optimizing compilers generate fast code

•  Hand-written assembly language code could be slower than

compiler-generated code, especially when compiled with
speed optimization

26

Execution Efficiency Summary

• Steps to improve execution (time) efficiency:

(1) Do timing studies

(2) Identify hot spots

(3) Use a better algorithm or data structure

(4) Enable compiler speed optimization

(5) Tune the code

14

27

Improving Memory Efficiency

•  These days, memory is cheap, so…

•  Memory (space) efficiency typically is less important than

execution (time) efficiency

•  Techniques to improve memory (space) efficiency…

28

Improving Memory Efficiency

(1) Use a smaller data type

•  E.g. short instead of int

(2) Compute instead of storing

•  In an array, if you often need to use the average value of an element

and its immediate neighbors, donʼt store the average with each
element but rather recompute it every time itʼs needed

(3) Enable compiler size optimization

 gcc217 -Os mysort.c –o mysort

15

29

Summary

• Steps to improve execution (time) efficiency:

(1) Do timing studies

(2) Identify hot spots *

(3) Use a better algorithm or data structure

(4) Enable compiler speed optimization

(5) Tune the code

* Use GPROF

• Techniques to improve memory (space) efficiency:

(1) Use a smaller data type

(2) Compute instead of storing

(3) Enable compiler size optimization

• And, most importantly…

30

Summary (cont.)

Clarity supersedes performance

Donʼt focus too much on improving
performance unless you must.

