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The Design of C: 
A Rational Reconstruction (cont.)
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Goals of this Lecture
•  Recall from last lecture… 
•  Help you learn about:

•  The decisions that were available to the designers of C
•  The decisions that were made by the designers of C
… and thereby…
•  C !

•  Why?
•  Learning the design rationale of the C language provides a richer 

understanding of C itself
•  … and is more interesting than simply learning the language itself

•  A power programmer knows both the programming language and its 
design rationale
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Character Data Types
•  Issue:  What character data types should C have?
•  Thought process

•  The most common character codes are (were!) ASCII and EBCDIC
•  ASCII is 7-bit
•  EBCDIC is 8-bit

•  Decisions
•  Provide type char 
•  Type char should be one byte Was that a 

good decision?
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Character Data Types (cont.)

•  Tangential Decision
• char should be an integer type

•  Can use type char to store small integers
•  Can do arithmetic with data of type char 
•  Can freely mix char and integer data

• ('a' + 1)  is  'b' (assuming ASCII)
• ('0' + 5)  is  '5' (assuming ASCII)

Was that a 
good decision?

How does Java 
handle these 
expressions?
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Character Constants
•  Issue:  How should C represent character constants?
•  Thought process

•  Could represent character constants as int constants, with 
truncation of high-order bytes

•  More readable to use single quote syntax ('a', 'b', etc.); but 
then…

•  Need special way to represent the single quote character
•  Need special ways to represent non-printable characters (e.g. 

newline, tab, space, etc.)

•  Decisions
•  Provide single quote syntax
•  Use backslash to express special characters
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Character Constants (cont.)
•  Examples

• 'a'  the a character
• (char)97 the a character
• (char)0141  the a character
• '\o141'  the a character, octal character form
• '\x61'  the a character, hexadecimal character form
• '\0'  the null character
• '\a'  bell
• '\b'  backspace
• '\f'  formfeed
• '\n'  newline
• '\r'  carriage return
• '\t'  horizontal tab
• '\v'  vertical tab
• '\\'  backslash
• '\''  single quote
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Strings
•  Issue:  How should C represent strings?
•  Thought process

•  String can be represented as a sequence of chars
•  How to know where char sequence ends?

•  Store length before char sequence?
•  Store special “sentinel” char after char sequence?

•  Strings are common in systems programming
•  C should be small/simple

Advantages/
disadvantages?

8 

Strings (cont.)
•  Decisions

•  Adopt a convention
•  String consists of a sequence of chars terminated with the null 

('\0') character
•  Use double-quote syntax (e.g. "abc", "hello") to represent a 

string constant
•  Provide no other language features for handling strings

•  Delegate string handling to standard library functions

•  Examples
• "abc" is a string constant
• 'a' is a char constant
• "a" is a string constant

How many
bytes?



5 

9 

Logical Data Type
•  Issue:  How should C represent logical data?
•  Thought process

•  Representing a logical value (TRUE or FALSE) requires only one bit
•  Smallest entity that can be addressed is one byte
•  Type char is one byte, so could be used to represent logical values
•  C should be small/simple
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Logical Data Type (cont.)

•  Decisions
•  Don't define a logical data type
•  Represent logical data using type char, or any integer type
•  Convention:  0 => FALSE, non-0 => TRUE
•  Convention used by:

•  Relational operators (<, >, etc.)
•  Logical operators (!, &&, ||)
•  Statements (if, while, etc.)

Was that a good 
decision?  (See 
the next 2 slides)
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Logical Data Type (cont.)
•  Note

•  Using integer data to represent logical data permits shortcuts

… 
int i; 
… 
if (i)  /* same as (i != 0) */ 
   statement1; 
else 
   statement2; 
… 

Are such shortcuts 
beneficial?
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Logical Data Type (cont.)
•  Note

•  The lack of logical data type cripples compiler's ability to detect 
some errors

… 
int i; 
… 
i = 0; 
… 
if (i = 5) 
   statement1; 
else 
   statement2; 
… 

How does Java 
handle this code?

What is the 
problem with this 
code?

What is the effect 
of this code?
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Floating-Point Data Types
•  Issue:  What floating-point data types should C have?
•  Thought process

•  Systems programs use floating-point data infrequently
•  But some application domains (e.g. scientific) use floating-point data 

often

•  Decisions
•  Provide three floating-point data types:  float, double, and long 
double 

•  bytes in float <= bytes in double <= bytes in long double 

•  Incidentally, on hats using gcc217
• float:  4 bytes
• double:  8 bytes
• long double: 12 bytes
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Floating-Point Constants
•  Issue:  How should C represent floating-point constants?
•  Thought process

•  Convenient to allow both fixed-point and scientific notation
•  Decimal is sufficient; no need for octal or hexadecimal

•  Decisions
•  Any constant that contains decimal point or "E" is floating-point
•  The default floating-point type is double 
•  Append "F" to indicate float 
•  Append "L" to indicate long double 

•  Examples
• double: 123.456, 1E-2, -1.23456E4 
• float: 123.456F, 1E-2F, -1.23456E4F 
• long double: 123.456L, 1E-2L, -1.23456E4L 

Why?
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Feature 2:  Operators

• A high-level programming language should have operators
• Operators combine with constants and variables to form 

expressions
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Kinds of Operators
•  Issue:  What kinds of operators should C have?
•  Thought process

•  Should handle typical operations
•  Should handle bit-level programming ("bit fiddling")

•  Decisions
•  Provide typical arithmetic operators:  + - * /  %
•  Provide typical relational operators:  == != < <= > >=

•  Each evaluates to 0=>FALSE or 1=>TRUE
•  Provide typical logical operators:  ! && ||

•  Each interprets 0=>FALSE, non-0=>TRUE
•  Each evaluates to 0=>FALSE or 1=>TRUE

•  Provide bitwise operators:  ~ & | ^ >> <<
•  Provide a cast operator:  (type) 
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Assignment Operator
•  Issue:  What about assignment?
•  Thought process

•  Must have a way to assign a value to a variable
•  Many high-level languages provide an assignment statement
•  Would be more expressive to define an assignment operator

•  Performs assignment, and then evaluates to the assigned value
•  Allows expressions that involve assignment to appear within 

larger expressions

•  Decisions
•  Provide assignment operator:  = 
•  Define assignment operator so it changes the value of a variable, 

and also evaluates to that value
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Assignment Operator (cont.)
•  Examples

i = 0; 
  /* Assign 0 to i. Evaluate to 0. 
     Discard the 0. */ 

i = j = 0; 
  /* Assign 0 to j. Evaluate to 0. 
     Assign 0 to i. Evaluate to 0. 
     Discard the 0. */ 

while ((i = getchar()) != EOF) … 
   /* Read a character.  Assign it to i. 
      Evaluate to that character. 
      Compare that character to EOF.  
      Evaluate to 0 (FALSE) or 1 (TRUE). */ 

Does the 
expressiveness 
affect clarity?
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Increment and Decrement Operators
•  Issue:  Should C provide increment and decrement 

operators?
•  Thought process

•  The construct i = i + 1 is common
•  Special purpose increment and decrement operators would make 

code more expressive
•  Such operators would complicate the language and compiler

•  Decisions
•  The convenience outweighs the complication
•  Provide increment and decrement operators:  ++ -- 

Was that a 
good 
decision?
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Special-Purpose Assignment Operators
•  Issue:  Should C provide special-purpose assignment 

operators?
•  Thought process

•  Constructs such as i = i + n and i = i * n are common.
•  Special-purpose assignment operators would make code more 

expressive
•  Such operators would complicate the language and compiler

•  Decisions
•  The convenience outweighs the complication
•  Provide special-purpose assignment operators:  += -= *= /= ~=  
&= |= ^= <<= >>= 

Was that a 
good 
decision?
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Sizeof Operator
•  Issue:  How can programmers determine the sizes of data?
•  Thought process

•  The sizes of most primitive types are unspecified
•  C must provide a way to determine the size of a given data type 

programmatically

•  Decisions
•  Provide a sizeof operator

•  Applied at compile-time
•  Operand can be a data type
•  Operand can be an expression, from which the compiler infers a 

data type

•  Examples, on hats using gcc217
• sizeof(int) evaluates to 4
• sizeof(i) evaluates to 4 (where i is a variable of type int)
• sizeof(i+1) evaluates to 4 (where i is a variable of type int)
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Other Operators
•  Issue:  What other operators should C have?
•  Decisions

•  Function call operator
•  Should mimic the familiar mathematical notation
• function(param1, param2, …) 

•  Conditional operator:  ?: 
•  The only ternary operator
•  See King book

•  Sequence operator:  , 
•  See King book

•  Pointer-related operators:  & * 
•  Described later in the course

•  Structure-related operators (.  ->)
•  Described later in the course
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Feature 3:  Control Statements

• A programming language must provide statements
• Some statements must affect flow of control
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Control Statements
•  Issue:  What control statements 

should C provide?

•  Thought process
•  Boehm and Jacopini proved that any 

algorithm can be expressed as the nesting 
of only 3 control structures:

Barry Boehm
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Control Statements (cont.)
(1)  Sequence

statement1

statement2

26 

Control Statements (cont.)
(2) Selection

statement1

condition

statement2

TRUE FALSE
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Control Statements (cont.)
(3) Repetition

statement

condition
TRUE FALSE
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Control Statements (cont.)

• Thought Process (cont.)
•  Dijkstra argued that any algorithm should be 

expressed using only those three control 
structures (GOTO Statement Considered 
Harmful paper)

•  The ALGOL programming language 
implemented control statements accordingly

• Decisions
•  Provide statements to implement those 3 

control structures
•  For convenience, provide a few extras

Edsgar Dijkstra
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Sequence Statement
•  Issue:  How should C implement sequence?

• Decision
•  Compound statement, alias block

{ 
   statement1; 
   statement2; 
    … 
} 
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Selection Statements
•  Issue:  How should C implement selection?

• Decisions
•  if statement, for one-path or two-path decisions

if (integerExpr) 
   statement1; 

if (integerExpr) 
   statement1; 
else 
   statement2; 
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Selection Statements (cont.)
• Decisions (cont.)

•  switch and break statements, for multi-path decisions

switch (integerExpr) { 
   case integerConstant1: 
      … 
      break; 
   case integerConstant2: 
      … 
      break; 
   … 
   default: 
      … 
} 

What if these 
break 
statements are 
omitted?

Was that use of 
break a good 
design decision?
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Repetition Statements
•  Issue:  How should C implement repetition?
• Decisions

•  while statement, for general repetition

•  for statement, for counting loops

•  do…while statement, for loops with test at trailing edge

while (integerExpr) 
   statement; 

for (initialExpr; integerExpr; incrementExpr) 
   statement; 

do 
   statement; 
while (integerExpr); 
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Other Control Statements
•  Issue:  What other control statements should C provide?
• Decisions

•  break statement (revisited)
•  Breaks out of closest enclosing switch or repetition statement

•  continue statement
•  Skips remainder of current loop iteration
•  Continues with next loop iteration
•  Can be difficult to understand; generally should avoid

•  goto statement and labels
•  Avoid!!! (as per Dijkstra)
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Feature 4:  Input/Output

•  A programming language must provide facilities for reading 
and writing data

•  Alternative:  A programming environment must provide 
such facilities
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Input/Output Facilities
•  Issue:  Should C provide I/O facilities?
•  Thought process

•  Unix provides the stream abstraction
•  A stream is a sequence of characters

•  Unix provides 3 standard streams
•  Standard input, standard output, standard error

•  C should be able to use those streams, and others
•  I/O facilities are complex
•  C should be small/simple

•  Decisions
•  Do not provide I/O facilities in C
•  Instead provide a standard library containing I/O facilities

•  Constants:   EOF 
•  Data types:  FILE (described later in course)
•  Variables:  stdin, stdout, and stderr 
•  Functions: …
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Reading Characters
•  Issue:  What functions should C provide for reading 

characters from standard input? 
•  Thought process

•  Need function to read a single character from stdin
•  Function must have a way to indicate failure, that is, to indicate that 

no characters remain

•  Decisions
•  Provide getchar() function
•  Make return type of getchar() wider than char 

•  Make it int; that's the natural word size
•  Define getchar() to return EOF (a special non-character int) to 

indicate failure 

•  Note
•  There is no such thing as "the EOF character"
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Writing Characters
•  Issue:  What functions should C provide for writing a 

character to standard output? 
•  Thought process

•  Need function to write a single character to stdout

•  Decisions
•  Provide a putchar() function
•  Define putchar() to accept one parameter

•  For symmetry with getchar(), parameter should be an int 
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Reading Other Data Types
•  Issue:  What functions should C provide for reading data of 

other primitive types?
•  Thought process

•  Must convert external form (sequence of character codes) to internal 
form

•  Could provide getshort(), getint(), getfloat(), etc.
•  Could provide one parameterized function to read any primitive type 

of data

•  Decisions
•  Provide scanf() function
•  Can read any primitive type of data
•  First parameter is a format string containing conversion 

specifications

•  See King book for details
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Writing Other Data Types
•  Issue:  What functions should C provide for writing data of 

other primitive types?
•  Thought process

•  Must convert internal form to external form (sequence of character 
codes)

•  Could provide putshort(), putint(), putfloat(), etc.
•  Could provide one parameterized function to write any primitive type 

of data

•  Decisions
•  Provide printf() function
•  Can write any primitive type of data
•  First parameter is a format string containing conversion 

specifications

•  See King book for details
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Other I/O Facilities
•  Issue:  What other I/O functions should C provide?
•  Decisions

• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

•  Described in King book, and later in the course after 
covering files, arrays, and strings
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Summary
•  Cʼs design goals affected decisions concerning language 

features:
•  Data types
•  Operators
•  Control statements
•  I/O facilities

•  Knowing the design goals and how they affected the design 
decisions can yield a rich understanding of C


