
1

1

The Design of C: 
A Rational Reconstruction (cont.)

2

Goals of this Lecture
•  Recall from last lecture…
•  Help you learn about:

•  The decisions that were available to the designers of C
•  The decisions that were made by the designers of C
… and thereby…
•  C !

•  Why?
•  Learning the design rationale of the C language provides a richer

understanding of C itself
•  … and is more interesting than simply learning the language itself

•  A power programmer knows both the programming language and its
design rationale

2

3

Character Data Types
•  Issue: What character data types should C have?
•  Thought process

•  The most common character codes are (were!) ASCII and EBCDIC
•  ASCII is 7-bit
•  EBCDIC is 8-bit

•  Decisions
•  Provide type char
•  Type char should be one byte Was that a

good decision?

4

Character Data Types (cont.)

•  Tangential Decision
• char should be an integer type

•  Can use type char to store small integers
•  Can do arithmetic with data of type char
•  Can freely mix char and integer data

• ('a' + 1) is 'b' (assuming ASCII)
• ('0' + 5) is '5' (assuming ASCII)

Was that a
good decision?

How does Java
handle these
expressions?

3

5

Character Constants
•  Issue: How should C represent character constants?
•  Thought process

•  Could represent character constants as int constants, with
truncation of high-order bytes

•  More readable to use single quote syntax ('a', 'b', etc.); but
then…

•  Need special way to represent the single quote character
•  Need special ways to represent non-printable characters (e.g.

newline, tab, space, etc.)

•  Decisions
•  Provide single quote syntax
•  Use backslash to express special characters

6

Character Constants (cont.)
•  Examples

• 'a' the a character
• (char)97 the a character
• (char)0141 the a character
• '\o141' the a character, octal character form
• '\x61' the a character, hexadecimal character form
• '\0' the null character
• '\a' bell
• '\b' backspace
• '\f' formfeed
• '\n' newline
• '\r' carriage return
• '\t' horizontal tab
• '\v' vertical tab
• '\\' backslash
• '\'' single quote

4

7

Strings
•  Issue: How should C represent strings?
•  Thought process

•  String can be represented as a sequence of chars
•  How to know where char sequence ends?

•  Store length before char sequence?
•  Store special “sentinel” char after char sequence?

•  Strings are common in systems programming
•  C should be small/simple

Advantages/
disadvantages?

8

Strings (cont.)
•  Decisions

•  Adopt a convention
•  String consists of a sequence of chars terminated with the null

('\0') character
•  Use double-quote syntax (e.g. "abc", "hello") to represent a

string constant
•  Provide no other language features for handling strings

•  Delegate string handling to standard library functions

•  Examples
• "abc" is a string constant
• 'a' is a char constant
• "a" is a string constant

How many
bytes?

5

9

Logical Data Type
•  Issue: How should C represent logical data?
•  Thought process

•  Representing a logical value (TRUE or FALSE) requires only one bit
•  Smallest entity that can be addressed is one byte
•  Type char is one byte, so could be used to represent logical values
•  C should be small/simple

10

Logical Data Type (cont.)

•  Decisions
•  Don't define a logical data type
•  Represent logical data using type char, or any integer type
•  Convention: 0 => FALSE, non-0 => TRUE
•  Convention used by:

•  Relational operators (<, >, etc.)
•  Logical operators (!, &&, ||)
•  Statements (if, while, etc.)

Was that a good
decision? (See
the next 2 slides)

6

11

Logical Data Type (cont.)
•  Note

•  Using integer data to represent logical data permits shortcuts

…
int i;
…
if (i) /* same as (i != 0) */
 statement1;
else
 statement2;
…

Are such shortcuts
beneficial?

12

Logical Data Type (cont.)
•  Note

•  The lack of logical data type cripples compiler's ability to detect
some errors

…
int i;
…
i = 0;
…
if (i = 5)
 statement1;
else
 statement2;
…

How does Java
handle this code?

What is the
problem with this
code?

What is the effect
of this code?

7

13

Floating-Point Data Types
•  Issue: What floating-point data types should C have?
•  Thought process

•  Systems programs use floating-point data infrequently
•  But some application domains (e.g. scientific) use floating-point data

often

•  Decisions
•  Provide three floating-point data types: float, double, and long
double

•  bytes in float <= bytes in double <= bytes in long double

•  Incidentally, on hats using gcc217
• float: 4 bytes
• double: 8 bytes
• long double: 12 bytes

14

Floating-Point Constants
•  Issue: How should C represent floating-point constants?
•  Thought process

•  Convenient to allow both fixed-point and scientific notation
•  Decimal is sufficient; no need for octal or hexadecimal

•  Decisions
•  Any constant that contains decimal point or "E" is floating-point
•  The default floating-point type is double
•  Append "F" to indicate float
•  Append "L" to indicate long double

•  Examples
• double: 123.456, 1E-2, -1.23456E4
• float: 123.456F, 1E-2F, -1.23456E4F
• long double: 123.456L, 1E-2L, -1.23456E4L

Why?

8

15

Feature 2: Operators

• A high-level programming language should have operators
• Operators combine with constants and variables to form

expressions

16

Kinds of Operators
•  Issue: What kinds of operators should C have?
•  Thought process

•  Should handle typical operations
•  Should handle bit-level programming ("bit fiddling")

•  Decisions
•  Provide typical arithmetic operators: + - * / %
•  Provide typical relational operators: == != < <= > >=

•  Each evaluates to 0=>FALSE or 1=>TRUE
•  Provide typical logical operators: ! && ||

•  Each interprets 0=>FALSE, non-0=>TRUE
•  Each evaluates to 0=>FALSE or 1=>TRUE

•  Provide bitwise operators: ~ & | ^ >> <<
•  Provide a cast operator: (type)

9

17

Assignment Operator
•  Issue: What about assignment?
•  Thought process

•  Must have a way to assign a value to a variable
•  Many high-level languages provide an assignment statement
•  Would be more expressive to define an assignment operator

•  Performs assignment, and then evaluates to the assigned value
•  Allows expressions that involve assignment to appear within

larger expressions

•  Decisions
•  Provide assignment operator: =
•  Define assignment operator so it changes the value of a variable,

and also evaluates to that value

18

Assignment Operator (cont.)
•  Examples

i = 0;
 /* Assign 0 to i. Evaluate to 0.
 Discard the 0. */

i = j = 0;
 /* Assign 0 to j. Evaluate to 0.
 Assign 0 to i. Evaluate to 0.
 Discard the 0. */

while ((i = getchar()) != EOF) …
 /* Read a character. Assign it to i.
 Evaluate to that character.
 Compare that character to EOF.
 Evaluate to 0 (FALSE) or 1 (TRUE). */

Does the
expressiveness
affect clarity?

10

19

Increment and Decrement Operators
•  Issue: Should C provide increment and decrement

operators?
•  Thought process

•  The construct i = i + 1 is common
•  Special purpose increment and decrement operators would make

code more expressive
•  Such operators would complicate the language and compiler

•  Decisions
•  The convenience outweighs the complication
•  Provide increment and decrement operators: ++ --

Was that a
good
decision?

20

Special-Purpose Assignment Operators
•  Issue: Should C provide special-purpose assignment

operators?
•  Thought process

•  Constructs such as i = i + n and i = i * n are common.
•  Special-purpose assignment operators would make code more

expressive
•  Such operators would complicate the language and compiler

•  Decisions
•  The convenience outweighs the complication
•  Provide special-purpose assignment operators: += -= *= /= ~=
&= |= ^= <<= >>=

Was that a
good
decision?

11

21

Sizeof Operator
•  Issue: How can programmers determine the sizes of data?
•  Thought process

•  The sizes of most primitive types are unspecified
•  C must provide a way to determine the size of a given data type

programmatically

•  Decisions
•  Provide a sizeof operator

•  Applied at compile-time
•  Operand can be a data type
•  Operand can be an expression, from which the compiler infers a

data type

•  Examples, on hats using gcc217
• sizeof(int) evaluates to 4
• sizeof(i) evaluates to 4 (where i is a variable of type int)
• sizeof(i+1) evaluates to 4 (where i is a variable of type int)

22

Other Operators
•  Issue: What other operators should C have?
•  Decisions

•  Function call operator
•  Should mimic the familiar mathematical notation
• function(param1, param2, …)

•  Conditional operator: ?:
•  The only ternary operator
•  See King book

•  Sequence operator: ,
•  See King book

•  Pointer-related operators: & *
•  Described later in the course

•  Structure-related operators (. ->)
•  Described later in the course

12

23

Feature 3: Control Statements

• A programming language must provide statements
• Some statements must affect flow of control

24

Control Statements
•  Issue: What control statements

should C provide?

•  Thought process
•  Boehm and Jacopini proved that any

algorithm can be expressed as the nesting
of only 3 control structures:

Barry Boehm

13

25

Control Statements (cont.)
(1)  Sequence

statement1

statement2

26

Control Statements (cont.)
(2) Selection

statement1

condition

statement2

TRUE FALSE

14

27

Control Statements (cont.)
(3) Repetition

statement

condition
TRUE FALSE

28

Control Statements (cont.)

• Thought Process (cont.)
•  Dijkstra argued that any algorithm should be

expressed using only those three control
structures (GOTO Statement Considered
Harmful paper)

•  The ALGOL programming language
implemented control statements accordingly

• Decisions
•  Provide statements to implement those 3

control structures
•  For convenience, provide a few extras

Edsgar Dijkstra

15

29

Sequence Statement
•  Issue: How should C implement sequence?

• Decision
•  Compound statement, alias block

{
 statement1;
 statement2;
 …
}

30

Selection Statements
•  Issue: How should C implement selection?

• Decisions
•  if statement, for one-path or two-path decisions

if (integerExpr)
 statement1;

if (integerExpr)
 statement1;
else
 statement2;

16

31

Selection Statements (cont.)
• Decisions (cont.)

•  switch and break statements, for multi-path decisions

switch (integerExpr) {
 case integerConstant1:
 …
 break;
 case integerConstant2:
 …
 break;
 …
 default:
 …
}

What if these
break
statements are
omitted?

Was that use of
break a good
design decision?

32

Repetition Statements
•  Issue: How should C implement repetition?
• Decisions

•  while statement, for general repetition

•  for statement, for counting loops

•  do…while statement, for loops with test at trailing edge

while (integerExpr)
 statement;

for (initialExpr; integerExpr; incrementExpr)
 statement;

do
 statement;
while (integerExpr);

17

33

Other Control Statements
•  Issue: What other control statements should C provide?
• Decisions

•  break statement (revisited)
•  Breaks out of closest enclosing switch or repetition statement

•  continue statement
•  Skips remainder of current loop iteration
•  Continues with next loop iteration
•  Can be difficult to understand; generally should avoid

•  goto statement and labels
•  Avoid!!! (as per Dijkstra)

34

Feature 4: Input/Output

•  A programming language must provide facilities for reading
and writing data

•  Alternative: A programming environment must provide
such facilities

18

35

Input/Output Facilities
•  Issue: Should C provide I/O facilities?
•  Thought process

•  Unix provides the stream abstraction
•  A stream is a sequence of characters

•  Unix provides 3 standard streams
•  Standard input, standard output, standard error

•  C should be able to use those streams, and others
•  I/O facilities are complex
•  C should be small/simple

•  Decisions
•  Do not provide I/O facilities in C
•  Instead provide a standard library containing I/O facilities

•  Constants: EOF
•  Data types: FILE (described later in course)
•  Variables: stdin, stdout, and stderr
•  Functions: …

36

Reading Characters
•  Issue: What functions should C provide for reading

characters from standard input?
•  Thought process

•  Need function to read a single character from stdin
•  Function must have a way to indicate failure, that is, to indicate that

no characters remain

•  Decisions
•  Provide getchar() function
•  Make return type of getchar() wider than char

•  Make it int; that's the natural word size
•  Define getchar() to return EOF (a special non-character int) to

indicate failure

•  Note
•  There is no such thing as "the EOF character"

19

37

Writing Characters
•  Issue: What functions should C provide for writing a

character to standard output?
•  Thought process

•  Need function to write a single character to stdout

•  Decisions
•  Provide a putchar() function
•  Define putchar() to accept one parameter

•  For symmetry with getchar(), parameter should be an int

38

Reading Other Data Types
•  Issue: What functions should C provide for reading data of

other primitive types?
•  Thought process

•  Must convert external form (sequence of character codes) to internal
form

•  Could provide getshort(), getint(), getfloat(), etc.
•  Could provide one parameterized function to read any primitive type

of data

•  Decisions
•  Provide scanf() function
•  Can read any primitive type of data
•  First parameter is a format string containing conversion

specifications

•  See King book for details

20

39

Writing Other Data Types
•  Issue: What functions should C provide for writing data of

other primitive types?
•  Thought process

•  Must convert internal form to external form (sequence of character
codes)

•  Could provide putshort(), putint(), putfloat(), etc.
•  Could provide one parameterized function to write any primitive type

of data

•  Decisions
•  Provide printf() function
•  Can write any primitive type of data
•  First parameter is a format string containing conversion

specifications

•  See King book for details

40

Other I/O Facilities
•  Issue: What other I/O functions should C provide?
•  Decisions

• fopen(): Open a stream
• fclose(): Close a stream
• fgetc(): Read a character from specified stream
• fputc(): Write a character to specified stream
• fgets(): Read a line/string from specified stream
• fputs(): Write a line/string to specified stream
• fscanf(): Read data from specified stream
• fprintf(): Write data to specified stream

•  Described in King book, and later in the course after
covering files, arrays, and strings

21

41

Summary
•  Cʼs design goals affected decisions concerning language

features:
•  Data types
•  Operators
•  Control statements
•  I/O facilities

•  Knowing the design goals and how they affected the design
decisions can yield a rich understanding of C

