The Design of C:
A Rational Reconstruction

Goals of this Lecture

• Help you learn about:
 • The decisions that were available to the designers of C
 • The decisions that were made by the designers of C
 … and thereby…
 • C!

• Why?
 • Learning the design rationale of the C language provides a richer understanding of C itself
 • … and might be more interesting than simply learning the language itself !!!
 • A power programmer knows both the programming language and its design rationale

• But first a preliminary topic…
Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0
- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, …)
 - Characters (‘a’, ‘z’, …)
 - Pixels, sounds
 - Internet addresses
- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic
Base 10 and Base 2

- **Decimal (base 10)**
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0\)

- **Binary (base 2)**
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22\)

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders

\[
\begin{align*}
12 / 2 & = 6 \quad R = 0 \\
6 / 2 & = 3 \quad R = 0 \\
3 / 2 & = 1 \quad R = 1 \\
1 / 2 & = 0 \quad R = 1 \\
\end{align*}
\]

Result = **1100**

Writing Bits is Tedious for People

- **Octal (base 8)**
 - Digits 0, 1, ..., 7

- **Hexadecimal (base 16)**
 - Digits 0, 1, ..., 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>Octal Digit</th>
<th>Hexadecimal Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 = 0</td>
<td>1000 = 8</td>
</tr>
<tr>
<td>0001 = 1</td>
<td>1001 = 9</td>
</tr>
<tr>
<td>0010 = 2</td>
<td>1010 = A</td>
</tr>
<tr>
<td>0011 = 3</td>
<td>1011 = B</td>
</tr>
<tr>
<td>0100 = 4</td>
<td>1100 = C</td>
</tr>
<tr>
<td>0101 = 5</td>
<td>1101 = D</td>
</tr>
<tr>
<td>0110 = 6</td>
<td>1110 = E</td>
</tr>
<tr>
<td>0111 = 7</td>
<td>1111 = F</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number

\[1011\ 0010\ 1010\ 1001\]

converted to hex is

B2A9
Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue

- Strength
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color

- In HTML, e.g. course “Schedule” Web page
 - Red: `De-Comment Assignment Due`
 - Blue: `Reading Period`

- Same thing in digital cameras
 - Each pixel is a mixture of red, green, and blue

Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)

- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
 - All arithmetic is modulo 2^n

- Examples of unsigned integers
 - 00000001 \rightarrow 1
 - 00001111 \rightarrow 15
 - 00010000 \rightarrow 16
 - 00100001 \rightarrow 33
 - 11111111 \rightarrow 255
Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column

<table>
<thead>
<tr>
<th>Base 10</th>
<th>Base 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 9 8</td>
<td>0 1 1</td>
</tr>
<tr>
<td>2 6 4</td>
<td>0 0 1</td>
</tr>
<tr>
<td>Sum: 4 6 2</td>
<td>Sum: 1 0 0</td>
</tr>
<tr>
<td>Carry: 0 1 1</td>
<td>Carry: 0 1 1</td>
</tr>
</tbody>
</table>

Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR

("exclusive OR")

<table>
<thead>
<tr>
<th>0100 0101</th>
<th>+ 0110 0111</th>
<th>1010 1100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100 0101</td>
<td>+ 0110 0111</td>
<td>1010 1100</td>
</tr>
</tbody>
</table>

AND

<table>
<thead>
<tr>
<th>69</th>
<th>103</th>
<th>172</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>103</td>
<td>172</td>
</tr>
</tbody>
</table>

Base 10

Base 2
Modulo Arithmetic

• Consider only numbers in a range
 • E.g., five-digit car odometer: 0, 1, ..., 99999
 • E.g., eight-bit numbers 0, 1, ..., 255

• Roll-over when you run out of space
 • E.g., car odometer goes from 99999 to 0, 1, ...
 • E.g., eight-bit number goes from 255 to 0, 1, ...

• Adding 2^n doesn’t change the answer
 • For eight-bit number, $n=8$ and $2^n=256$
 • E.g., $(37 + 256) \mod 256$ is simply 37

• This can help us do subtraction...
 • Suppose you want to compute $a - b$
 • Note that this equals $a + (256 - 1 - b) + 1$

One’s and Two’s Complement

• One’s complement: flip every bit
 • E.g., b is 01000101 (i.e., 69 in decimal)
 • One’s complement is 10111010
 • That’s simply 255-69

• Subtracting from 11111111 is easy (no carry needed!)

\[
\begin{array}{c}
1111 \ 1111 \\
- 0100 \ 0101 \\
\hline
1011 \ 1010
\end{array}
\]

 \[\text{b} \quad \text{one’s complement} \]

• Two’s complement
 • Add 1 to the one’s complement
 • E.g., $(255 - 69) + 1 \Rightarrow 1011 \ 1011$
Putting it All Together

• Computing “a – b”
 • Same as “a + 256 – b”
 • Same as “a + (255 – b) + 1”
 • Same as “a + onesComplement(b) + 1”
 • Same as “a + twosComplement(b)”

• Example: 172 – 69
 • The original number 69: 0100 0101
 • One’s complement of 69: 1011 1010
 • Two’s complement of 69: 1011 1011
 • Add to the number 172: 1010 1100
 • The sum comes to: 0110 0111
 • Equals: 103 in decimal

Signed Integers

• Sign-magnitude representation
 • Use one bit to store the sign
 • Zero for positive number
 • One for negative number
 • Examples
 • E.g., 0010 1100 \(\rightarrow\) 44
 • E.g., 1010 1100 \(\rightarrow\) -44
 • Hard to do arithmetic this way, so it is rarely used

• Complement representation
 • One’s complement
 • Flip every bit
 • E.g., 1101 0011 \(\rightarrow\) -44
 • Two’s complement
 • Flip every bit, then add 1
 • E.g., 1101 0100 \(\rightarrow\) -44
Overflow: Running Out of Room

- Adding two large integers together
 - Sum might be too large to store in the number of bits available
 - What happens?

- Unsigned integers
 - All arithmetic is “modulo” arithmetic
 - Sum would just wrap around

- Signed integers
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536

Bitwise Operators: AND and OR

- Bitwise AND (&)
 - Mod on the cheap!
 - E.g., 53 % 16
 - … is same as 53 & 15;

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Bitwise OR (|)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

53 \[\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
1 \\
\end{array}\] & 15 \[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
1 \\
1 \\
\end{array}\] & 5 \[\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
\end{array}\]
Bitwise Operators: Not and XOR

- **One’s complement (~)**
 - Turns 0 to 1, and 1 to 0
 - E.g., set last three bits to 0
 - \(x = x \& \sim 7; \)

- **XOR (^)**
 - 0 if both bits are the same
 - 1 if the two bits are different

\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]

Bitwise Operators: Shift Left/Right

- **Shift left (<<):** Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0

\[
53 \rightarrow 00110101 \\
53 << 2 \rightarrow 11010100
\]

- **Shift right (>>):** Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Can vary from one machine to another!

\[
53 \rightarrow 00110101 \\
53 >> 2 \rightarrow 00011101
\]
Example: Counting the 1’s

• How many 1 bits in a number?
 • E.g., how many 1 bits in the binary representation of 53?

 \[\begin{array}{cccccc}
 0 & 0 & 1 & 1 & 0 & 1 \end{array} \]

 • Four 1 bits

• How to count them?
 • Look at one bit at a time
 • Check if that bit is a 1
 • Increment counter

• How to look at one bit at a time?
 • Look at the last bit: \(n \& 1 \)
 • Check if it is a 1: \((n \& 1) == 1 \), or simply \((n \& 1) \)

Counting the Number of ‘1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>
int main(void) {
    unsigned int n;
    unsigned int count;
    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect unsigned int.\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; n > 0; n >>= 1)
        count += (n & 1);
    printf("Number of 1 bits: %u\n", count);
    return 0;
}
```
Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, …
 - Pixels, sounds, colors, etc.

- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two’s complement for subtraction

- Bitwise operators
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic

The Main Event

The Design of C
Goals of C

Designers wanted C to support:
- **Systems programming**
 - Development of Unix OS
 - Development of Unix programming tools

But also:
- **Applications programming**
 - Development of financial, scientific, etc. applications

Systems programming was the primary intended use

The Goals of C (cont.)

The designers wanted C to be:
- Low-level
 - Close to assembly/machine language
 - Close to hardware

But also:
- Portable
 - Yield systems software that is easy to port to differing hardware
The Goals of C (cont.)

The designers wanted C to be:
- Easy for people to handle
- Easy to understand
- Expressive
 - High (functionality/sourceCodeSize) ratio

But also:
- Easy for computers to handle
- Easy/fast to compile
- Yield efficient machine language code

Commonality:
- Small/simple

Design Decisions

In light of those goals...
- What design decisions did the designers of C have?
- What design decisions did they make?

Consider programming language features, from simple to complex...
Feature 1: Data Types

• Previously in this lecture:
 • Bits can be combined into bytes
 • Our interpretation of a collection of bytes gives it meaning
 • A signed integer, an unsigned integer, a RGB color, etc.

• A data type is a well-defined interpretation of a collection of bytes

• A high-level programming language should provide
 primitive data types
 • Facilitates abstraction
 • Facilitates manipulation via associated well-defined operators
 • Enables compiler to check for mixed types, inappropriate use of
 types, etc.

Primitive Data Types

• Issue: What primitive data types should C provide?

• Thought process
 • C should handle:
 • Integers
 • Characters
 • Character strings
 • Logical (alias Boolean) data
 • Floating-point numbers
 • C should be small/simple

• Decisions
 • Provide integer, character, and floating-point data types
 • Do not provide a character string data type (More on that later)
 • Do not provide a logical data type (More on that later)
Integer Data Types

• Issue: What integer data types should C provide?

• Thought process
 • For flexibility, should provide integer data types of various sizes
 • For portability at application level, should specify size of each data type
 • For portability at systems level, should define integral data types in terms of natural word size of computer
 • Primary use will be systems programming

Integer Data Types (cont.)

• Decisions
 • Provide three integer data types: short, int, and long
 • Do not specify sizes; instead:
 • int is natural word size
 • 2 <= bytes in short <= bytes in int <= bytes in long

• Incidentally, on hats using gcc217
 • Natural word size: 4 bytes
 • short: 2 bytes
 • int: 4 bytes
 • long: 4 bytes
Integer Constants

• Issue: How should C represent integer constants?

• Thought process
 • People naturally use decimal
 • Systems programmers often use binary, octal, hexadecimal

• Decisions
 • Use decimal notation as default
 • Use "0" prefix to indicate octal notation
 • Use "0x" prefix to indicate hexadecimal notation
 • Do not allow binary notation; too verbose, error prone
 • Use "L" suffix to indicate long constant
 • Do not use a suffix to indicate short constant; instead must use cast

• Examples
 • int: 123, -123, 0173, 0x7B
 • long: 123L, -123L, 0173L, 0x7BL
 • short: (short)123, (short)-123, (short)0173, (short)0x7B

Was that a good decision?

Unsigned Integer Data Types

• Issue: Should C have both signed and unsigned integer data types?
Unsigned Integers and Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, ..., 99999
 - E.g., eight-bit numbers 0, 1, ..., 255

- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, ...
 - E.g., eight-bit number goes from 255 to 0, 1, ...

- Adding 2^n doesn’t change the answer
 - For eight-bit number, $n=8$ and $2^n=256$
 - E.g., $(37 + 256) \mod 256$ is simply 37

- This can help us do subtraction...
 - Suppose you want to compute $a - b$
 - Note that this equals $a + (256 - b)$
 - And it equals $a + (256 - 1 - b) + 1$

One’s and Two’s Complement

- One’s complement: flip every bit
 - Same as “all 1’s” minus the number, so 2^n-1 minus the number
 - This is the same as flipping all the bits of the number
 - E.g., b is 01000101 (i.e., 69 in decimal)
 - One’s complement is 10111010
 - That’s simply 255-69, i.e. (256-1-69)
 - \[
 \begin{array}{c}
 1111 \\
 - 0100 \\
 \hline
 1011 \\
 \end{array}
 \]

- Two’s complement
 - Add 1 to the one’s complement, so it’s 2^n minus the number
 - E.g., $(255 – 69) + 1 \Rightarrow 1011 1011$
 - That’s 256 – 69, so -69 + 256, which is adding 2^n which doesn’t change the number per modulo arithmetic.
Putting it All Together

- Computing “a – b”
 - Same as “a + 256 – b”
 - Same as “a + (255 – b) + 1”
 - Same as “a + onesComplement(b) + 1”
 - Same as “a + twosComplement(b)”

- Example: 172 – 69
 - The original number 69: 0100 0101
 - One’s complement of 69: 1011 1010
 - Two’s complement of 69: 1011 1011
 - Add to the number 172: 1010 1100
 - The sum comes to: 0110 0111
 - Equals: 103 in decimal

Signed Integers

- Sign-magnitude representation
 - Use one bit to store the sign
 - Zero for positive number
 - One for negative number
 - Examples
 - E.g., 0010 1100 ➞ 44
 - E.g., 1010 1100 ➞ -44
 - Hard to do arithmetic this way, so it is rarely used

- Complement representation
 - One’s complement
 - Flip every bit
 - E.g., 1101 0011 ➞ -44
 - Two’s complement
 - Flip every bit, then add 1
 - E.g., 1101 0100 ➞ -44
Unsigned Integer Data Types

• Issue: Should C have both signed and unsigned integer data types?

• Thought process
 • Must represent positive and negative integers
 • Signed types are essential
 • Unsigned data can be twice as large as signed data
 • Unsigned data could be useful
 • Unsigned data are good for bit-level operations
 • Bit-level operations are common in systems programming
 • Implementing both signed and unsigned data types is complex
 • Must define behavior when an expression involves both

Unsigned Integer Data Types (cont.)

• Decisions
 • Provide unsigned integer types: unsigned short, unsigned int, and unsigned long
 • Conversion rules in mixed-type expressions are complex
 • Generally, mixing signed and unsigned converts signed to unsigned
 • See King book Section 7.4 for details

Do you see any potential problems?

Was providing unsigned types a good decision?

What decision did the designers of Java make?
Unsigned Integer Constants

- Issue: How should C represent unsigned integer constants?

- Thought process
 - “L” suffix distinguishes long from int; also could use a suffix to distinguish signed from unsigned
 - Octal or hexadecimal probably are used with bit-level operators

- Decisions
 - Default is signed
 - Use "U" suffix to indicate unsigned
 - Integers expressed in octal or hexadecimal automatically are unsigned

- Examples
 - unsigned int: 123U, 0173, 0x7B
 - unsigned long: 123UL, 0173L, 0x7BL
 - unsigned short: (short)123U, (short)0173, (short)0x7B

There’s More

To be continued next lecture